Math Problem Statement

حل تفصيلي

Lorsque l'on applique un échelon de potentiel à une électrode, le courant de charge de cette électrode varie de manière exponentielle avec le temps. Calculer la constante de temps RC pour différentes résistances et le courant initial i0 pour chaque cellule.

Solution

Let's analyze the problem in the image step by step.

Problem Summary:

We are given:

  1. The equation for the charging current: i=i0et/(RC)i = i_0 e^{-t/(RC)}
  2. Parameters:
    • Resistance values (RR): 1Ω1 \, \Omega, 10Ω10 \, \Omega, and 100Ω100 \, \Omega
    • Capacitance (CC): 5μF5 \, \mu\text{F}
    • Step potential: 100mV100 \, \text{mV}

Questions to solve:

  1. Calculate the time constant (RCRC) for each resistance.
  2. Calculate the initial charging current (i0i_0) for each cell.

Step 1: Time Constant Calculation (RCRC)

The time constant is given by: RC=RCRC = R \cdot C Where:

  • RR is the resistance
  • C=5μF=5×106FC = 5 \, \mu\text{F} = 5 \times 10^{-6} \, \text{F}

For each resistance:

  1. R=1ΩR = 1 \, \Omega: RC=15×106=5×106sRC = 1 \cdot 5 \times 10^{-6} = 5 \times 10^{-6} \, \text{s}
  2. R=10ΩR = 10 \, \Omega: RC=105×106=5×105sRC = 10 \cdot 5 \times 10^{-6} = 5 \times 10^{-5} \, \text{s}
  3. R=100ΩR = 100 \, \Omega: RC=1005×106=5×104sRC = 100 \cdot 5 \times 10^{-6} = 5 \times 10^{-4} \, \text{s}

Thus, the time constants are:

  • 5μs5 \, \mu\text{s} for 1Ω1 \, \Omega
  • 50μs50 \, \mu\text{s} for 10Ω10 \, \Omega
  • 500μs500 \, \mu\text{s} for 100Ω100 \, \Omega

Step 2: Initial Current (i0i_0)

The initial charging current is given by: i0=ΔVRi_0 = \frac{\Delta V}{R} Where:

  • ΔV=100mV=0.1V\Delta V = 100 \, \text{mV} = 0.1 \, \text{V}

For each resistance:

  1. R=1ΩR = 1 \, \Omega: i0=0.11=0.1A(100mA)i_0 = \frac{0.1}{1} = 0.1 \, \text{A} \, (100 \, \text{mA})
  2. R=10ΩR = 10 \, \Omega: i0=0.110=0.01A(10mA)i_0 = \frac{0.1}{10} = 0.01 \, \text{A} \, (10 \, \text{mA})
  3. R=100ΩR = 100 \, \Omega: i0=0.1100=0.001A(1mA)i_0 = \frac{0.1}{100} = 0.001 \, \text{A} \, (1 \, \text{mA})

Thus, the initial charging currents are:

  • 100mA100 \, \text{mA} for 1Ω1 \, \Omega
  • 10mA10 \, \text{mA} for 10Ω10 \, \Omega
  • 1mA1 \, \text{mA} for 100Ω100 \, \Omega

Final Results:

  1. Time constants (RCRC):

    • 1Ω1 \, \Omega: 5μs5 \, \mu\text{s}
    • 10Ω10 \, \Omega: 50μs50 \, \mu\text{s}
    • 100Ω100 \, \Omega: 500μs500 \, \mu\text{s}
  2. Initial currents (i0i_0):

    • 1Ω1 \, \Omega: 100mA100 \, \text{mA}
    • 10Ω10 \, \Omega: 10mA10 \, \text{mA}
    • 100Ω100 \, \Omega: 1mA1 \, \text{mA}

Let me know if you'd like a deeper explanation of any step or more related calculations! 😊


Related Questions:

  1. How does the time constant affect the charging and discharging process of a capacitor?
  2. What is the significance of the exponential decay in the current equation?
  3. How would increasing the capacitance affect the results?
  4. Why is the initial current inversely proportional to the resistance?
  5. Can you derive the time-dependent current equation from basic capacitor principles?

Tip:

Always check the units carefully when calculating values involving microfarads (μF\mu\text{F}) and millivolts (mV\text{mV}) to avoid scaling errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential Decay
Capacitor Charging
Ohm's Law

Formulas

i = i0 * exp(-t / RC)
RC = R * C
i0 = ΔV / R

Theorems

Exponential decay in RC circuits
Ohm's law

Suitable Grade Level

Undergraduate Level - Physics or Electrical Engineering