Math Problem Statement

\frac{1}{7 + 5\sqrt{3}} + \frac{1}{7 - 4\sqrt{3}}

Solution

The problem is as follows:

17+53+1743\frac{1}{7 + 5\sqrt{3}} + \frac{1}{7 - 4\sqrt{3}}

To simplify this expression, we should rationalize each denominator separately, then add the two fractions. Here’s a step-by-step approach:

Step 1: Rationalize each fraction

Rationalizing 17+53\frac{1}{7 + 5\sqrt{3}}

Multiply the numerator and denominator by the conjugate, 7537 - 5\sqrt{3}:

17+53753753=753(7+53)(753)\frac{1}{7 + 5\sqrt{3}} \cdot \frac{7 - 5\sqrt{3}}{7 - 5\sqrt{3}} = \frac{7 - 5\sqrt{3}}{(7 + 5\sqrt{3})(7 - 5\sqrt{3})}

The denominator simplifies as:

(7+53)(753)=49(53)2=4975=26(7 + 5\sqrt{3})(7 - 5\sqrt{3}) = 49 - (5\sqrt{3})^2 = 49 - 75 = -26

So,

17+53=75326=75326\frac{1}{7 + 5\sqrt{3}} = \frac{7 - 5\sqrt{3}}{-26} = -\frac{7 - 5\sqrt{3}}{26}

Rationalizing 1743\frac{1}{7 - 4\sqrt{3}}

Similarly, multiply the numerator and denominator by the conjugate, 7+437 + 4\sqrt{3}:

17437+437+43=7+43(743)(7+43)\frac{1}{7 - 4\sqrt{3}} \cdot \frac{7 + 4\sqrt{3}}{7 + 4\sqrt{3}} = \frac{7 + 4\sqrt{3}}{(7 - 4\sqrt{3})(7 + 4\sqrt{3})}

The denominator simplifies as:

(743)(7+43)=49(43)2=4948=1(7 - 4\sqrt{3})(7 + 4\sqrt{3}) = 49 - (4\sqrt{3})^2 = 49 - 48 = 1

So,

1743=7+43\frac{1}{7 - 4\sqrt{3}} = 7 + 4\sqrt{3}

Step 2: Add the two simplified fractions

Now we have:

75326+(7+43)-\frac{7 - 5\sqrt{3}}{26} + (7 + 4\sqrt{3})

To add them, convert 7+437 + 4\sqrt{3} to a fraction with a denominator of 26:

7+43=26(7+43)26=182+1043267 + 4\sqrt{3} = \frac{26(7 + 4\sqrt{3})}{26} = \frac{182 + 104\sqrt{3}}{26}

Now combine:

75326+182+104326=7+53+182+104326-\frac{7 - 5\sqrt{3}}{26} + \frac{182 + 104\sqrt{3}}{26} = \frac{-7 + 5\sqrt{3} + 182 + 104\sqrt{3}}{26}

Simplify the numerator:

=175+109326= \frac{175 + 109\sqrt{3}}{26}

Thus, the final answer is:

175+109326\frac{175 + 109\sqrt{3}}{26}

Would you like more details on any of these steps?

Here are some related questions:

  1. How do you find the conjugate of a binomial with a square root?
  2. Why is rationalizing denominators important?
  3. What are some common simplification techniques for fractions?
  4. How does rationalization affect the sign of the denominator?
  5. Can similar methods be used to simplify complex fractions?

Tip: When simplifying expressions with radicals, always check if the expression can be further simplified by factoring out common terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rationalization
Radicals
Algebraic Fractions

Formulas

\frac{a}{b} \cdot \frac{b}{b} = \frac{a \cdot b}{b \cdot b}
(a + b)(a - b) = a^2 - b^2

Theorems

Difference of Squares

Suitable Grade Level

Grades 10-12