Math Problem Statement

(2\sqrt(7))/(3+\sqrt(7)) rationalize

Solution

To rationalize the expression 273+7\frac{2\sqrt{7}}{3 + \sqrt{7}}, we need to multiply both the numerator and the denominator by the conjugate of the denominator. The conjugate of 3+73 + \sqrt{7} is 373 - \sqrt{7}.

Step-by-step solution:

  1. Write the expression: 273+7\frac{2\sqrt{7}}{3 + \sqrt{7}}

  2. Multiply by the conjugate: 273+7×3737=27(37)(3+7)(37)\frac{2\sqrt{7}}{3 + \sqrt{7}} \times \frac{3 - \sqrt{7}}{3 - \sqrt{7}} = \frac{2\sqrt{7}(3 - \sqrt{7})}{(3 + \sqrt{7})(3 - \sqrt{7})}

  3. Simplify the denominator: (3+7)(37)=32(7)2=97=2(3 + \sqrt{7})(3 - \sqrt{7}) = 3^2 - (\sqrt{7})^2 = 9 - 7 = 2 So, the denominator becomes 2.

  4. Expand the numerator: 27(37)=27×327×72\sqrt{7}(3 - \sqrt{7}) = 2\sqrt{7} \times 3 - 2\sqrt{7} \times \sqrt{7} =672×7=6714= 6\sqrt{7} - 2 \times 7 = 6\sqrt{7} - 14

  5. Rewrite the expression: 67142\frac{6\sqrt{7} - 14}{2}

  6. Simplify the final result: 672142=377\frac{6\sqrt{7}}{2} - \frac{14}{2} = 3\sqrt{7} - 7

Final Answer:

3773\sqrt{7} - 7

Would you like further clarification on any steps?


Here are 5 related questions for further practice:

  1. Rationalize 452+5\frac{4\sqrt{5}}{2 + \sqrt{5}}.
  2. Simplify 31+3\frac{\sqrt{3}}{1 + \sqrt{3}} by rationalizing the denominator.
  3. Rationalize and simplify 54+2\frac{5}{4 + \sqrt{2}}.
  4. Simplify 322+3\frac{3\sqrt{2}}{\sqrt{2} + \sqrt{3}}.
  5. Solve 753\frac{7}{5 - \sqrt{3}} by rationalizing the denominator.

Tip: Always multiply by the conjugate to eliminate square roots from denominators.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Rationalization
Radical Expressions

Formulas

Conjugate Multiplication: (a + b)(a - b) = a^2 - b^2
Simplification of Radical Expressions

Theorems

Difference of Squares Theorem

Suitable Grade Level

Grades 9-11