Math Problem Statement

Write the following quadratic function in standard form, and give the vertex: g(π‘₯) = 6π‘₯^2 - π‘₯ + 5

Solution

To write the quadratic function g(x)=6x2βˆ’x+5g(x) = 6x^2 - x + 5 in standard form, we need to rewrite it in the form:

g(x)=a(xβˆ’h)2+kg(x) = a(x - h)^2 + k

where (h,k)(h, k) represents the vertex of the parabola.

We can achieve this by completing the square.


Step 1: Factor out the coefficient of x2x^2 (which is 6) from the first two terms.

g(x)=6(x2βˆ’16x)+5g(x) = 6\left(x^2 - \frac{1}{6}x\right) + 5

Step 2: Complete the square for the expression inside the parentheses.

To complete the square, take half of the coefficient of xx, square it, and add it inside the parentheses.

The coefficient of xx inside the parentheses is βˆ’16-\frac{1}{6}. Half of that is βˆ’112-\frac{1}{12}, and squaring it gives (βˆ’112)2=1144\left(-\frac{1}{12}\right)^2 = \frac{1}{144}.

Now add and subtract 1144\frac{1}{144} inside the parentheses:

g(x)=6(x2βˆ’16x+1144βˆ’1144)+5g(x) = 6\left(x^2 - \frac{1}{6}x + \frac{1}{144} - \frac{1}{144}\right) + 5

g(x)=6((xβˆ’112)2βˆ’1144)+5g(x) = 6\left(\left(x - \frac{1}{12}\right)^2 - \frac{1}{144}\right) + 5

Step 3: Simplify the expression.

Distribute the 6 across the terms inside the parentheses:

g(x)=6(xβˆ’112)2βˆ’6Γ—1144+5g(x) = 6\left(x - \frac{1}{12}\right)^2 - 6 \times \frac{1}{144} + 5

g(x)=6(xβˆ’112)2βˆ’124+5g(x) = 6\left(x - \frac{1}{12}\right)^2 - \frac{1}{24} + 5

Combine the constant terms:

g(x)=6(xβˆ’112)2+(5βˆ’124)g(x) = 6\left(x - \frac{1}{12}\right)^2 + \left(5 - \frac{1}{24}\right)

g(x)=6(xβˆ’112)2+11924g(x) = 6\left(x - \frac{1}{12}\right)^2 + \frac{119}{24}


Final Answer:

The quadratic function in standard form is:

g(x)=6(xβˆ’112)2+11924g(x) = 6\left(x - \frac{1}{12}\right)^2 + \frac{119}{24}

The vertex of the parabola is:

(112,11924)\left( \frac{1}{12}, \frac{119}{24} \right)

Let me know if you'd like further explanation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Functions
Completing the Square

Formulas

Standard form of a quadratic function: g(x) = a(x - h)^2 + k

Theorems

Completing the square theorem

Suitable Grade Level

Grades 9-11