Math Problem Statement

For the quadratic function f, the table shows three values of x and their corresponding values of f(x). Which equation defines f? Table: x | f(x) -1 | 10 0 | 14 1 | 20 The options for the quadratic function are: A) f(x) = 3x^2 + 3x + 14 B) f(x) = 5x^2 + x + 14 C) f(x) = 9x^2 - x + 14 D) f(x) = x^2 + 5x + 14

Solution

The problem asks us to determine which equation defines the quadratic function f(x)f(x), given the table of xx values and corresponding f(x)f(x) values:

xxf(x)f(x)
-110
014
120

The options for the quadratic function are:

  • A) f(x)=3x2+3x+14f(x) = 3x^2 + 3x + 14
  • B) f(x)=5x2+x+14f(x) = 5x^2 + x + 14
  • C) f(x)=9x2x+14f(x) = 9x^2 - x + 14
  • D) f(x)=x2+5x+14f(x) = x^2 + 5x + 14

Step 1: Substitute x=1x = -1, x=0x = 0, and x=1x = 1 into each equation to see if the function matches the corresponding f(x)f(x) values.

Option A: f(x)=3x2+3x+14f(x) = 3x^2 + 3x + 14

  • For x=1x = -1: f(1)=3(1)2+3(1)+14=3(1)3+14=14f(-1) = 3(-1)^2 + 3(-1) + 14 = 3(1) - 3 + 14 = 14 But f(1)f(-1) should be 10. This does not match.

Option B: f(x)=5x2+x+14f(x) = 5x^2 + x + 14

  • For x=1x = -1: f(1)=5(1)2+(1)+14=5(1)1+14=18f(-1) = 5(-1)^2 + (-1) + 14 = 5(1) - 1 + 14 = 18 This is not 10, so Option B is incorrect.

Option C: f(x)=9x2x+14f(x) = 9x^2 - x + 14

  • For x=1x = -1: f(1)=9(1)2(1)+14=9(1)+1+14=24f(-1) = 9(-1)^2 - (-1) + 14 = 9(1) + 1 + 14 = 24 This also doesn't match f(1)=10f(-1) = 10.

Option D: f(x)=x2+5x+14f(x) = x^2 + 5x + 14

  • For x=1x = -1: f(1)=(1)2+5(1)+14=15+14=10f(-1) = (-1)^2 + 5(-1) + 14 = 1 - 5 + 14 = 10 This matches f(1)=10f(-1) = 10.

  • For x=0x = 0: f(0)=(0)2+5(0)+14=0+0+14=14f(0) = (0)^2 + 5(0) + 14 = 0 + 0 + 14 = 14 This matches f(0)=14f(0) = 14.

  • For x=1x = 1: f(1)=(1)2+5(1)+14=1+5+14=20f(1) = (1)^2 + 5(1) + 14 = 1 + 5 + 14 = 20 This matches f(1)=20f(1) = 20.

Since Option D satisfies all the values in the table, the correct equation is: f(x)=x2+5x+14\boxed{f(x) = x^2 + 5x + 14}

Would you like further details on solving quadratic functions?

Related Questions:

  1. How do you derive the equation of a quadratic function given data points?
  2. What is the standard form of a quadratic equation?
  3. How do transformations affect the graph of a quadratic function?
  4. Can quadratic functions model real-world scenarios like projectile motion?
  5. How can you find the vertex and axis of symmetry of a quadratic function?

Tip: Always check multiple points when matching a function to a set of data values!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Functions
Substitution

Formulas

General form of a quadratic function f(x) = ax^2 + bx + c
Substitution of values to test equations

Theorems

Quadratic Function Properties

Suitable Grade Level

Grades 8-10