Math Problem Statement

Determine the number of real roots for given quadratic equations using the discriminant and solve the equations using the quadratic formula.

Solution

This worksheet contains quadratic equations, where you are tasked with solving using the discriminant to determine the number of real roots, and applying the quadratic formula to find the solutions. I'll help break this down into parts:


Step 1: Use the Discriminant (Δ = b² - 4ac)

The discriminant helps determine:

  • Δ > 0: Two distinct real roots.
  • Δ = 0: One real root (repeated root).
  • Δ < 0: No real roots (complex roots).

Let’s calculate the discriminant for each missing row:


  1. 5x22x+25=05x^2 - 2x + 25 = 0

    • a=5a = 5, b=2b = -2, c=25c = 25
    • Δ=b24ac=(2)24(5)(25)=4500=496\Delta = b^2 - 4ac = (-2)^2 - 4(5)(25) = 4 - 500 = -496
    • Number of Roots: 0 (No real roots)
    • Justification: The discriminant is negative, so the graph does not intersect the x-axis.
  2. 4x2+11x+1=04x^2 + 11x + 1 = 0

    • a=4a = 4, b=11b = 11, c=1c = 1
    • Δ=b24ac=(11)24(4)(1)=12116=105\Delta = b^2 - 4ac = (11)^2 - 4(4)(1) = 121 - 16 = 105
    • Number of Roots: 2 (Two distinct real roots)
    • Justification: The discriminant is positive, so the graph intersects the x-axis twice.

Step 2: Solve Using the Quadratic Formula

The quadratic formula is: x=b±Δ2ax = \frac{-b \pm \sqrt{\Delta}}{2a} Now let's solve each of the quadratic equations in the second section:

  1. 2x211x+10=02x^2 - 11x + 10 = 0

    • a=2,b=11,c=10a = 2, b = -11, c = 10
    • Δ=(11)24(2)(10)=12180=41\Delta = (-11)^2 - 4(2)(10) = 121 - 80 = 41
    • Roots: x=(11)±412(2)=11±414x = \frac{-(-11) \pm \sqrt{41}}{2(2)} = \frac{11 \pm \sqrt{41}}{4} Approximate roots: x11+6.44=4.35andx116.44=1.15x \approx \frac{11 + 6.4}{4} = 4.35 \quad \text{and} \quad x \approx \frac{11 - 6.4}{4} = 1.15
  2. x2+14x+49=0x^2 + 14x + 49 = 0

    • a=1,b=14,c=49a = 1, b = 14, c = 49
    • Δ=(14)24(1)(49)=196196=0\Delta = (14)^2 - 4(1)(49) = 196 - 196 = 0
    • Roots: x=14±02(1)=142=7x = \frac{-14 \pm \sqrt{0}}{2(1)} = \frac{-14}{2} = -7 Single root: x=7x = -7
  3. x2+8x+19=0x^2 + 8x + 19 = 0

    • a=1,b=8,c=19a = 1, b = 8, c = 19
    • Δ=(8)24(1)(19)=6476=12\Delta = (8)^2 - 4(1)(19) = 64 - 76 = -12
    • No real roots, since Δ<0\Delta < 0.
  4. x26x+9=0x^2 - 6x + 9 = 0

    • a=1,b=6,c=9a = 1, b = -6, c = 9
    • Δ=(6)24(1)(9)=3636=0\Delta = (-6)^2 - 4(1)(9) = 36 - 36 = 0
    • Roots: x=(6)±02(1)=62=3x = \frac{-(-6) \pm \sqrt{0}}{2(1)} = \frac{6}{2} = 3 Single root: x=3x = 3
  5. 2x27x=162x^2 - 7x = 16

    • Rearrange: 2x27x16=02x^2 - 7x - 16 = 0
    • a=2,b=7,c=16a = 2, b = -7, c = -16
    • Δ=(7)24(2)(16)=49+128=177\Delta = (-7)^2 - 4(2)(-16) = 49 + 128 = 177
    • Roots: x=(7)±1772(2)=7±1774x = \frac{-(-7) \pm \sqrt{177}}{2(2)} = \frac{7 \pm \sqrt{177}}{4} Approximate roots: x7+13.34=5.08andx713.34=1.58x \approx \frac{7 + 13.3}{4} = 5.08 \quad \text{and} \quad x \approx \frac{7 - 13.3}{4} = -1.58
  6. 3x2=4(x+3)3x^2 = -4(x + 3)

    • Expand: 3x2+4x+12=03x^2 + 4x + 12 = 0
    • a=3,b=4,c=12a = 3, b = 4, c = 12
    • Δ=(4)24(3)(12)=16144=128\Delta = (4)^2 - 4(3)(12) = 16 - 144 = -128
    • No real roots, since Δ<0\Delta < 0.

Would you like detailed steps for a specific calculation?

5 Relative Questions

  1. How does the discriminant affect the nature of roots geometrically?
  2. Can we always use the quadratic formula regardless of the discriminant's value?
  3. How do repeated roots (Δ = 0) relate to the vertex of the parabola?
  4. Why does a negative discriminant imply no real solutions?
  5. What alternative methods can solve quadratic equations besides the quadratic formula?

Tip:

Always simplify equations to standard form (ax2+bx+c=0ax^2 + bx + c = 0) before calculating the discriminant or using the quadratic formula!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Quadratic Equations
Discriminant Analysis

Formulas

Discriminant formula: Δ = b² - 4ac
Quadratic formula: x = (-b ± √Δ) / 2a

Theorems

Fundamental Theorem of Algebra

Suitable Grade Level

Grades 9-12