Math Problem Statement

using formal mathematical logical deduction, prove or disprove ∀ϵ ∈ N, (ϵ + 1)^3 − 5ϵ^2 + 6 is odd

Solution

To prove or disprove the statement ϵN,(ϵ+1)35ϵ2+6 is odd\forall \epsilon \in \mathbb{N}, (\epsilon + 1)^3 - 5\epsilon^2 + 6 \text{ is odd}, we can analyze the expression step by step using formal mathematical logic and deduction.

Step 1: Expression Breakdown

The given expression is:

f(ϵ)=(ϵ+1)35ϵ2+6f(\epsilon) = (\epsilon + 1)^3 - 5\epsilon^2 + 6

First, expand (ϵ+1)3(\epsilon + 1)^3:

(ϵ+1)3=ϵ3+3ϵ2+3ϵ+1(\epsilon + 1)^3 = \epsilon^3 + 3\epsilon^2 + 3\epsilon + 1

Substitute this back into the original expression:

f(ϵ)=(ϵ3+3ϵ2+3ϵ+1)5ϵ2+6f(\epsilon) = (\epsilon^3 + 3\epsilon^2 + 3\epsilon + 1) - 5\epsilon^2 + 6

Simplify:

f(ϵ)=ϵ3+(3ϵ25ϵ2)+3ϵ+1+6f(\epsilon) = \epsilon^3 + (3\epsilon^2 - 5\epsilon^2) + 3\epsilon + 1 + 6 f(ϵ)=ϵ32ϵ2+3ϵ+7f(\epsilon) = \epsilon^3 - 2\epsilon^2 + 3\epsilon + 7

Thus, the simplified expression is:

f(ϵ)=ϵ32ϵ2+3ϵ+7f(\epsilon) = \epsilon^3 - 2\epsilon^2 + 3\epsilon + 7

Step 2: Analyzing the Parity of the Expression

To determine if f(ϵ)f(\epsilon) is odd for all ϵN\epsilon \in \mathbb{N}, we analyze its behavior based on whether ϵ\epsilon is even or odd.

Case 1: ϵ\epsilon is even

Let ϵ=2k\epsilon = 2k, where kNk \in \mathbb{N}. Substituting ϵ=2k\epsilon = 2k into f(ϵ)f(\epsilon):

f(2k)=(2k)32(2k)2+3(2k)+7f(2k) = (2k)^3 - 2(2k)^2 + 3(2k) + 7 f(2k)=8k38k2+6k+7f(2k) = 8k^3 - 8k^2 + 6k + 7

Now check the parity (even or odd) of each term:

  • 8k38k^3 is even,
  • 8k28k^2 is even,
  • 6k6k is even,
  • 77 is odd.

Thus, the sum of an even number of terms plus 7 (an odd number) is odd. Therefore, f(2k)f(2k) is odd for all even ϵ\epsilon.

Case 2: ϵ\epsilon is odd

Let ϵ=2k+1\epsilon = 2k + 1, where kNk \in \mathbb{N}. Substituting ϵ=2k+1\epsilon = 2k + 1 into f(ϵ)f(\epsilon):

f(2k+1)=(2k+1)32(2k+1)2+3(2k+1)+7f(2k + 1) = (2k + 1)^3 - 2(2k + 1)^2 + 3(2k + 1) + 7

First, expand (2k+1)3(2k + 1)^3 and (2k+1)2(2k + 1)^2:

(2k+1)3=8k3+12k2+6k+1(2k + 1)^3 = 8k^3 + 12k^2 + 6k + 1 (2k+1)2=4k2+4k+1(2k + 1)^2 = 4k^2 + 4k + 1

Now substitute into the expression:

f(2k+1)=(8k3+12k2+6k+1)2(4k2+4k+1)+3(2k+1)+7f(2k + 1) = (8k^3 + 12k^2 + 6k + 1) - 2(4k^2 + 4k + 1) + 3(2k + 1) + 7 f(2k+1)=8k3+12k2+6k+1(8k2+8k+2)+(6k+3)+7f(2k + 1) = 8k^3 + 12k^2 + 6k + 1 - (8k^2 + 8k + 2) + (6k + 3) + 7 f(2k+1)=8k3+(12k28k2)+(6k8k+6k)+(12+3+7)f(2k + 1) = 8k^3 + (12k^2 - 8k^2) + (6k - 8k + 6k) + (1 - 2 + 3 + 7) f(2k+1)=8k3+4k2+4k+9f(2k + 1) = 8k^3 + 4k^2 + 4k + 9

Now check the parity of each term:

  • 8k38k^3 is even,
  • 4k24k^2 is even,
  • 4k4k is even,
  • 99 is odd.

Thus, the sum of an even number of terms plus 9 (an odd number) is odd. Therefore, f(2k+1)f(2k + 1) is odd for all odd ϵ\epsilon.

Step 3: Conclusion

Since f(ϵ)f(\epsilon) is odd for both even and odd ϵ\epsilon, we conclude that:

ϵN,(ϵ+1)35ϵ2+6 is odd.\forall \epsilon \in \mathbb{N}, (\epsilon + 1)^3 - 5\epsilon^2 + 6 \text{ is odd}.

Thus, the statement is true.


Would you like more details or clarifications?

Here are five related questions:

  1. How can we prove if a polynomial is always odd or even?
  2. How does the parity of individual terms in a polynomial affect the overall result?
  3. Can this method be generalized to other cubic expressions?
  4. How can we use modular arithmetic to verify if an expression is odd or even?
  5. What other properties can be inferred from analyzing the parity of a polynomial?

Tip: Always check specific cases (like even and odd integers) to better understand the behavior of polynomials in parity-related problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Functions
Parity (Odd and Even Numbers)
Cubic Expressions

Formulas

(ϵ + 1)^3 = ϵ^3 + 3ϵ^2 + 3ϵ + 1
Expanded expression: (ϵ + 1)^3 - 5ϵ^2 + 6 = ϵ^3 - 2ϵ^2 + 3ϵ + 7

Theorems

Parity Theorem (even and odd numbers behavior)
Expansion of Binomials

Suitable Grade Level

Grades 10-12