Math Problem Statement

Show that function taking an ordered pair (x_1, x_2), (y_1, y_2) of elements of R^2 to |x_1 y_1| + |x_2 + y_2| in not an inner product on R^2

Solution

To show that the function ff defined by

f((x1,x2),(y1,y2))=x1y1+x2+y2f\left((x_1, x_2), (y_1, y_2)\right) = |x_1 y_1| + |x_2 + y_2|

is not an inner product on R2\mathbb{R}^2, we need to check if it satisfies the properties of an inner product. The properties that a function ,:R2×R2R\langle \cdot, \cdot \rangle: \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R} must satisfy to be an inner product are:

  1. Positivity: x,x0\langle \mathbf{x}, \mathbf{x} \rangle \geq 0 and x,x=0\langle \mathbf{x}, \mathbf{x} \rangle = 0 if and only if x=0\mathbf{x} = \mathbf{0}.
  2. Linearity in the first argument: ax+by,z=ax,z+by,z\langle a\mathbf{x} + b\mathbf{y}, \mathbf{z} \rangle = a\langle \mathbf{x}, \mathbf{z} \rangle + b\langle \mathbf{y}, \mathbf{z} \rangle for all a,bRa, b \in \mathbb{R} and all x,y,zR2\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^2.
  3. Symmetry: x,y=y,x\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle for all x,yR2\mathbf{x}, \mathbf{y} \in \mathbb{R}^2.

Let's verify these properties one by one for the function ff.

1. Positivity

Consider f((x1,x2),(x1,x2))f\left((x_1, x_2), (x_1, x_2)\right): f((x1,x2),(x1,x2))=x1x1+x2+x2=x12+2x2f\left((x_1, x_2), (x_1, x_2)\right) = |x_1 \cdot x_1| + |x_2 + x_2| = |x_1^2| + |2x_2| Clearly, f((x1,x2),(x1,x2))0f\left((x_1, x_2), (x_1, x_2)\right) \geq 0. However, it equals 0 only if x1=0x_1 = 0 and x2=0x_2 = 0. So, the positivity condition is satisfied.

2. Linearity in the First Argument

Consider the function for a,bRa, b \in \mathbb{R} and vectors (x1,x2),(y1,y2),(z1,z2)R2(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2: f(a(x1,x2)+b(y1,y2),(z1,z2))=f((ax1+by1,ax2+by2),(z1,z2))f\left(a(x_1, x_2) + b(y_1, y_2), (z_1, z_2)\right) = f\left((ax_1 + by_1, ax_2 + by_2), (z_1, z_2)\right) This gives: f((ax1+by1,ax2+by2),(z1,z2))=(ax1+by1)z1+(ax2+by2)+z2f\left((ax_1 + by_1, ax_2 + by_2), (z_1, z_2)\right) = |(ax_1 + by_1)z_1| + |(ax_2 + by_2) + z_2| However: af((x1,x2),(z1,z2))+bf((y1,y2),(z1,z2))=a(x1z1+x2+z2)+b(y1z1+y2+z2)a f\left((x_1, x_2), (z_1, z_2)\right) + b f\left((y_1, y_2), (z_1, z_2)\right) = a\left(|x_1 z_1| + |x_2 + z_2|\right) + b\left(|y_1 z_1| + |y_2 + z_2|\right) Linearity fails because (ax1+by1)z1|(ax_1 + by_1)z_1| is generally not equal to ax1z1+by1z1a|x_1 z_1| + b|y_1 z_1|, especially if x1y1z1<0x_1 y_1 z_1 < 0.

3. Symmetry

Let's check if f((x1,x2),(y1,y2))=f((y1,y2),(x1,x2))f\left((x_1, x_2), (y_1, y_2)\right) = f\left((y_1, y_2), (x_1, x_2)\right): f((x1,x2),(y1,y2))=x1y1+x2+y2f\left((x_1, x_2), (y_1, y_2)\right) = |x_1 y_1| + |x_2 + y_2| f((y1,y2),(x1,x2))=y1x1+y2+x2f\left((y_1, y_2), (x_1, x_2)\right) = |y_1 x_1| + |y_2 + x_2| Since x1y1=y1x1|x_1 y_1| = |y_1 x_1| and x2+y2=y2+x2|x_2 + y_2| = |y_2 + x_2|, symmetry is satisfied.

Conclusion

The function fails to satisfy the linearity condition, which is a critical requirement for an inner product. Therefore, the function f((x1,x2),(y1,y2))=x1y1+x2+y2f\left((x_1, x_2), (y_1, y_2)\right) = |x_1 y_1| + |x_2 + y_2| is not an inner product on R2\mathbb{R}^2.

Would you like to explore any particular property further, or do you have any other questions?

Here are five related questions you might find interesting:

  1. What are the properties that distinguish an inner product from a general bilinear form?
  2. How does the Cauchy-Schwarz inequality relate to inner products?
  3. Can you provide examples of valid inner products on Rn\mathbb{R}^n?
  4. How do inner products define the notion of orthogonality in vector spaces?
  5. What are some applications of inner product spaces in functional analysis?

Tip: When verifying if a function is an inner product, always start by checking linearity, as it is often the most likely condition to fail.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Inner Products

Formulas

f((x_1, x_2), (y_1, y_2)) = |x_1 y_1| + |x_2 + y_2|
Positivity: ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0
Linearity: ⟨ax + by, z⟩ = a⟨x, z⟩ + b⟨y, z⟩
Symmetry: ⟨x, y⟩ = ⟨y, x⟩

Theorems

Inner Product Properties

Suitable Grade Level

Undergraduate