Math Problem Statement

Show that (a – b)(a + b) + (b – c)(b + c) + (c – a)(c + a) = 0 3 11 Subtract: 3a (a + b + c ) – 2 b (a – b + c) from 4c ( – a + b + c )

Solution

Let's solve the given expressions step-by-step.

Part 1: Show that (ab)(a+b)+(bc)(b+c)+(ca)(c+a)=0(a - b)(a + b) + (b - c)(b + c) + (c - a)(c + a) = 0

We can expand each term:

  1. Expand each product: (ab)(a+b)=a2b2(a - b)(a + b) = a^2 - b^2 (bc)(b+c)=b2c2(b - c)(b + c) = b^2 - c^2 (ca)(c+a)=c2a2(c - a)(c + a) = c^2 - a^2

  2. Combine the results: (a2b2)+(b2c2)+(c2a2)(a^2 - b^2) + (b^2 - c^2) + (c^2 - a^2)

  3. Group the terms: a2b2+b2c2+c2a2a^2 - b^2 + b^2 - c^2 + c^2 - a^2

  4. Observe that each term cancels: (a2a2)+(b2b2)+(c2c2)=0(a^2 - a^2) + (b^2 - b^2) + (c^2 - c^2) = 0

Thus, we have shown that: (ab)(a+b)+(bc)(b+c)+(ca)(c+a)=0(a - b)(a + b) + (b - c)(b + c) + (c - a)(c + a) = 0


Part 2: Subtract 3a(a+b+c)2b(ab+c)3a(a + b + c) - 2b(a - b + c) from 4c(a+b+c)4c(-a + b + c)

  1. Expand each term:

    • For 4c(a+b+c)4c(-a + b + c): 4c(a)+4c(b)+4c(c)=4ac+4bc+4c24c(-a) + 4c(b) + 4c(c) = -4ac + 4bc + 4c^2
    • For 3a(a+b+c)3a(a + b + c): 3a2+3ab+3ac3a^2 + 3ab + 3ac
    • For 2b(ab+c)-2b(a - b + c): 2ba+2b22bc-2ba + 2b^2 - 2bc
  2. Combine the expression for the subtraction: 4c(a+b+c)(3a(a+b+c)2b(ab+c))4c(-a + b + c) - (3a(a + b + c) - 2b(a - b + c)) This translates to: (4ac+4bc+4c2)(3a2+3ab+3ac2ba+2b22bc)(-4ac + 4bc + 4c^2) - (3a^2 + 3ab + 3ac - 2ba + 2b^2 - 2bc)

  3. Distributing the negative sign: 4ac+4bc+4c23a23ab3ac+2ba2b2+2bc-4ac + 4bc + 4c^2 - 3a^2 - 3ab - 3ac + 2ba - 2b^2 + 2bc

  4. Combine like terms:

    • The a2a^2 terms: 3a2-3a^2
    • The b2b^2 terms: 4bc+2bc2b2=6bc2b24bc + 2bc - 2b^2 = 6bc - 2b^2
    • The c2c^2 terms: 4c24c^2
    • The abab terms: 3ab+2ba=ab-3ab + 2ba = -ab
    • The acac terms: 4ac3ac=7ac-4ac - 3ac = -7ac

So, the final result is: 3a2+(6bc2b2)+4c2ab7ac-3a^2 + (6bc - 2b^2) + 4c^2 - ab - 7ac


Would you like more details on any part of this solution? Here are some follow-up questions:

  1. How can you verify the identity using specific numerical values for aa, bb, and cc?
  2. What are some properties of polynomial identities that help simplify these expressions?
  3. Can you derive similar identities for three variables?
  4. How do these algebraic manipulations relate to geometric interpretations?
  5. What methods can be used to check the correctness of algebraic identities?

Tip: When dealing with polynomial identities, systematically expand and simplify each term to look for cancellations or patterns.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Polynomial Identities

Formulas

(a - b)(a + b) = a^2 - b^2
(b - c)(b + c) = b^2 - c^2
(c - a)(c + a) = c^2 - a^2

Theorems

Polynomial identities
Difference of squares

Suitable Grade Level

Grades 10-12