Math Problem Statement
Проверить, что следующие бинарные отношения являются отношениями эквивалентности, и если это верно, то найти все различные классы эквивалентности: (a) бинарное отношение ℛ1 на множестве {1, 2, 3} такое, что ℛ1 = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)}
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Binary Relations
Equivalence Relations
Set Theory
Formulas
Transitivity: (a, b) ∈ ℛ and (b, c) ∈ ℛ implies (a, c) ∈ ℛ
Symmetry: (a, b) ∈ ℛ implies (b, a) ∈ ℛ
Reflexivity: (a, a) ∈ ℛ for all a ∈ Set
Theorems
Properties of Equivalence Relations: Reflexivity, Symmetry, Transitivity
Suitable Grade Level
Undergraduate Mathematics
Related Recommendation
Determining if a Given Relation is an Equivalence Relation on Set A
Analyzing Relations on a Set: Reflexivity, Symmetry, Antisymmetry, Transitivity
Properties of Relations on Set S={1,2,3} with Reflexivity, Symmetry, and Transitivity
Identifying Properties of Relations on Sets: Example with Relation R on S={1,2,3}
Analysis of Relation Properties: Reflexivity, Symmetry, Antisymmetry, Transitivity