Math Problem Statement

If \(\tan\left(i \log \frac{x - iy}{x + iy}\right) = 2\), prove that \(x^2 - y^2 = xy\).

Solution

We need to solve the given problem. The equation provided is:

tan(ilogxiyx+iy)=2,\tan\left(i \log \frac{x - iy}{x + iy}\right) = 2, and we are tasked with proving that x2y2=xyx^2 - y^2 = xy.


Step-by-step solution:

  1. Simplify the complex logarithm: The argument of the logarithm is a fraction: z=xiyx+iy.z = \frac{x - iy}{x + iy}. Write zz in polar form: xiy=x2+y2eiθ,x+iy=x2+y2eiθ.x - iy = \sqrt{x^2 + y^2} e^{-i\theta}, \quad x + iy = \sqrt{x^2 + y^2} e^{i\theta}. So: xiyx+iy=e2iθ,\frac{x - iy}{x + iy} = e^{-2i\theta}, where θ=tan1(yx)\theta = \tan^{-1}\left(\frac{y}{x}\right).

  2. Apply the logarithm: Using the logarithmic property of exponential expressions: log(xiyx+iy)=log(e2iθ)=2iθ.\log\left(\frac{x - iy}{x + iy}\right) = \log\left(e^{-2i\theta}\right) = -2i\theta.

  3. Simplify the given expression: Substituting this result into the original equation: tan(ilogxiyx+iy)=tan(i(2iθ))=tan(2θ).\tan\left(i \log \frac{x - iy}{x + iy}\right) = \tan\left(i(-2i\theta)\right) = \tan(2\theta). Hence: tan(2θ)=2.\tan(2\theta) = 2.

  4. Use the tangent double-angle identity: The identity for tan(2θ)\tan(2\theta) is: tan(2θ)=2tanθ1tan2θ.\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}. Let tanθ=yx\tan\theta = \frac{y}{x}, so: tan(2θ)=2yx1(yx)2.\tan(2\theta) = \frac{2\frac{y}{x}}{1 - \left(\frac{y}{x}\right)^2}. Simplifying: tan(2θ)=2yx1y2x2=2yxy2x=2xyx2y2.\tan(2\theta) = \frac{\frac{2y}{x}}{1 - \frac{y^2}{x^2}} = \frac{2y}{x - \frac{y^2}{x}} = \frac{2xy}{x^2 - y^2}.

  5. Set tan(2θ)=2\tan(2\theta) = 2: From the equation: 2xyx2y2=2.\frac{2xy}{x^2 - y^2} = 2. Multiply through by x2y2x^2 - y^2: 2xy=2(x2y2).2xy = 2(x^2 - y^2). Dividing by 2: xy=x2y2.xy = x^2 - y^2.

  6. Rearrange to the required form: x2y2=xy.x^2 - y^2 = xy.


Conclusion:

We have successfully proven that: x2y2=xy.x^2 - y^2 = xy.

Let me know if you'd like detailed clarifications or further assistance!


5 Related Questions:

  1. What is the geometric interpretation of tan1(yx)\tan^{-1}\left(\frac{y}{x}\right)?
  2. How does the complex logarithm work in polar coordinates?
  3. Can you derive tan(2θ)\tan(2\theta) using the sum of angles formula?
  4. What happens if tan(2θ)=2\tan(2\theta) = -2 instead?
  5. How do Euler’s formulas simplify complex expressions?

1 Tip:

Always represent complex fractions in polar form to simplify logarithms and trigonometric identities effectively.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Trigonometry
Logarithmic Properties
Polar Coordinates

Formulas

\(\tan(2\theta) = \frac{2 \tan\theta}{1 - \tan^2\theta}\)
Polar form: \(z = r e^{i\theta}\)
Logarithm: \(\log(e^{x}) = x\)

Theorems

Tangent Double-Angle Identity
Euler's Formula

Suitable Grade Level

Grades 11-12 and College