Math Problem Statement
prove the identity
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometric Identities
Simplifying Expressions
Algebraic Manipulation
Formulas
\( \sec(x) = \frac{1}{\cos(x)} \)
\( \tan(x) = \frac{\sin(x)}{\cos(x)} \)
Difference of squares: \( (a - b)(a + b) = a^2 - b^2 \)
Theorems
Pythagorean Identity: \(1 - \sin^2(x) = \cos^2(x)\)
Suitable Grade Level
Grades 10-12
Related Recommendation
Proving Trigonometric Identity: \( \frac{1}{1 - \sin x} + \frac{1 - \sin x}{\cos^2 x} = 2 \sec^2 x \)
Prove Trigonometric Identity (cos x) / (1 + sin x) + (1 + sin x) / (cos x) ≡ 2 sec x
Proving Trigonometric Identity: 1 - sinx/cosx = 1/(secx + tanx)
Trigonometric Proof: \( \frac{1}{1 - \sin x} + \frac{1 - \sin x}{\cos^2 x} = 2 \sec^2 x \)
Proving the Trigonometric Identity: sin(x)(tan(x) + cot(x)) = sec(x)