Math Problem Statement

prove

Solution

To prove n1(mod4)n \equiv 1 \pmod{4} if and only if n1(mod8)n \equiv 1 \pmod{8} or n5(mod8)n \equiv 5 \pmod{8}, we need to show both directions:

Forward Direction: n1(mod4)(n1(mod8) or n5(mod8))n \equiv 1 \pmod{4} \Rightarrow (n \equiv 1 \pmod{8} \text{ or } n \equiv 5 \pmod{8})

Assume n1(mod4)n \equiv 1 \pmod{4}. This means that n=4k+1n = 4k + 1 for some integer kk.

Now, we need to consider this modulo 8:

n=4k+1n = 4k + 1

Case 1: kk is even

Let k=2mk = 2m for some integer mm. n=4(2m)+1=8m+1n = 4(2m) + 1 = 8m + 1 Thus, n1(mod8)n \equiv 1 \pmod{8}.

Case 2: kk is odd

Let k=2m+1k = 2m + 1 for some integer mm. n=4(2m+1)+1=8m+4+1=8m+5n = 4(2m + 1) + 1 = 8m + 4 + 1 = 8m + 5 Thus, n5(mod8)n \equiv 5 \pmod{8}.

So, if n1(mod4)n \equiv 1 \pmod{4}, then n1(mod8)n \equiv 1 \pmod{8} or n5(mod8)n \equiv 5 \pmod{8}.

Reverse Direction: (n1(mod8) or n5(mod8))n1(mod4)(n \equiv 1 \pmod{8} \text{ or } n \equiv 5 \pmod{8}) \Rightarrow n \equiv 1 \pmod{4}

We need to show this in two cases:

Case 1: n1(mod8)n \equiv 1 \pmod{8}

This means n=8m+1n = 8m + 1 for some integer mm.

Now, consider this modulo 4: n=8m+1n = 8m + 1 8m+10+1(mod4)n1(mod4)8m + 1 \equiv 0 + 1 \pmod{4} \Rightarrow n \equiv 1 \pmod{4}

Case 2: n5(mod8)n \equiv 5 \pmod{8}

This means n=8m+5n = 8m + 5 for some integer mm.

Now, consider this modulo 4: n=8m+5n = 8m + 5 8m+50+5(mod4)51(mod4)n1(mod4)8m + 5 \equiv 0 + 5 \pmod{4} \Rightarrow 5 \equiv 1 \pmod{4} \Rightarrow n \equiv 1 \pmod{4}

Thus, if n1(mod8)n \equiv 1 \pmod{8} or n5(mod8)n \equiv 5 \pmod{8}, then n1(mod4)n \equiv 1 \pmod{4}.

Conclusion

We have shown both directions of the if and only if statement: n1(mod4)    n1(mod8) or n5(mod8)n \equiv 1 \pmod{4} \iff n \equiv 1 \pmod{8} \text{ or } n \equiv 5 \pmod{8}

Do you want details or have any questions? Here are some questions you might want to ask:

  1. How do I solve other modular arithmetic problems?
  2. Can you explain more examples of modular equivalence?
  3. How does this relate to solving congruences in general?
  4. What are some applications of modular arithmetic in computer science?
  5. How do we handle modular arithmetic with negative numbers?

Tip: When dealing with modular arithmetic, breaking down the problem into smaller congruences can simplify your calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Modular Arithmetic

Formulas

-

Theorems

-

Suitable Grade Level

Undergraduate level