Math Problem Statement

Consider the propositional formula ( NOT ( P ) IFF Q ) IMPLIES R and the formula ( P AND Q ) OR ( NOT ( P ) AND NOT ( Q ) ) OR R .Prove that the two formulas are equivalent, using logical rules

Solution

We are given two propositional formulas:

  1. ¬P    Q    R\neg P \iff Q \implies R
  2. (PQ)(¬P¬Q)R(P \land Q) \lor (\neg P \land \neg Q) \lor R

We need to prove that these two formulas are logically equivalent. To do this, we will simplify both formulas using logical rules and show that they reduce to the same form.

Formula 1: (¬P    Q)    R(\neg P \iff Q) \implies R

We'll begin by breaking down this formula step by step:

Step 1: Expand ¬P    Q\neg P \iff Q

The biconditional     \iff can be rewritten as two implications:

¬P    Q(¬P    Q)(Q    ¬P)\neg P \iff Q \equiv (\neg P \implies Q) \land (Q \implies \neg P)

Step 2: Rewrite each implication

Using the implication identity A    B¬ABA \implies B \equiv \neg A \lor B, we rewrite both implications:

¬P    QPQ\neg P \implies Q \equiv P \lor Q Q    ¬P¬Q¬PQ \implies \neg P \equiv \neg Q \lor \neg P

So, the biconditional becomes:

¬P    Q(PQ)(¬Q¬P)\neg P \iff Q \equiv (P \lor Q) \land (\neg Q \lor \neg P)

Step 3: Substitution into the original formula

Now we substitute this back into the original formula:

((PQ)(¬Q¬P))    R((P \lor Q) \land (\neg Q \lor \neg P)) \implies R

Step 4: Apply implication

Again, using the implication identity A    B¬ABA \implies B \equiv \neg A \lor B, we rewrite the entire formula as:

¬((PQ)(¬Q¬P))R\neg ((P \lor Q) \land (\neg Q \lor \neg P)) \lor R

Step 5: Apply De Morgan’s Law

To simplify ¬((PQ)(¬Q¬P))\neg ((P \lor Q) \land (\neg Q \lor \neg P)), we use De Morgan's Law:

¬((PQ)(¬Q¬P))¬(PQ)¬(¬Q¬P)\neg ((P \lor Q) \land (\neg Q \lor \neg P)) \equiv \neg (P \lor Q) \lor \neg (\neg Q \lor \neg P)

Using De Morgan's Law again on both parts:

¬(PQ)¬P¬Q\neg (P \lor Q) \equiv \neg P \land \neg Q ¬(¬Q¬P)QP\neg (\neg Q \lor \neg P) \equiv Q \land P

Thus, the formula simplifies to:

(¬P¬Q)(PQ)R(\neg P \land \neg Q) \lor (P \land Q) \lor R

Formula 2: (PQ)(¬P¬Q)R(P \land Q) \lor (\neg P \land \neg Q) \lor R

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Logical Equivalence
Biconditional
Implication
De Morgan's Law

Formulas

Biconditional: A ↔ B ≡ (A → B) ∧ (B → A)
Implication: A → B ≡ ¬A ∨ B
De Morgan's Law: ¬(A ∧ B) ≡ ¬A ∨ ¬B and ¬(A ∨ B) ≡ ¬A ∧ ¬B

Theorems

De Morgan's Laws
Rules of Logical Equivalence
Implication Identity

Suitable Grade Level

Undergraduate Logic or Discrete Mathematics