Math Problem Statement

Prove that for every 0 < x < y the following inequality holds: (1 + 1 2 √y)(y − x) (1 + √y)2 < y 1 + √y − x 1 + √x < (1 + 1 2 √x)(y − x) (1 + √x)2 . b) Conclude that lim x→∞ ( x + 1 1 + √x + 1 − x 1 + √x ) = 0 . (Appeal to theorems we proved in class. You need not justify your algebra.)

Solution

To prove the given inequality and evaluate the limit, let's proceed step by step.


Part (a): Prove the inequality

The inequality to prove is:

(1+12y)(yx)(1+y)2<y1+yx1+x<(1+12x)(yx)(1+x)2.\frac{\left(1 + \frac{1}{2\sqrt{y}}\right)(y - x)}{(1 + \sqrt{y})^2} < \frac{y}{1 + \sqrt{y}} - \frac{x}{1 + \sqrt{x}} < \frac{\left(1 + \frac{1}{2\sqrt{x}}\right)(y - x)}{(1 + \sqrt{x})^2}.

Strategy:

  1. Rewrite the middle term: The term y1+yx1+x\frac{y}{1 + \sqrt{y}} - \frac{x}{1 + \sqrt{x}} represents a difference of fractions, which can be rewritten as:

y1+yx1+x=y(1+x)x(1+y)(1+y)(1+x).\frac{y}{1 + \sqrt{y}} - \frac{x}{1 + \sqrt{x}} = \frac{y(1 + \sqrt{x}) - x(1 + \sqrt{y})}{(1 + \sqrt{y})(1 + \sqrt{x})}.

Expanding and simplifying the numerator: y(1+x)x(1+y)=y+yxxxy.y(1 + \sqrt{x}) - x(1 + \sqrt{y}) = y + y\sqrt{x} - x - x\sqrt{y}.

Thus: y1+yx1+x=(yx)+(yxxy)(1+y)(1+x).\frac{y}{1 + \sqrt{y}} - \frac{x}{1 + \sqrt{x}} = \frac{(y - x) + (y\sqrt{x} - x\sqrt{y})}{(1 + \sqrt{y})(1 + \sqrt{x})}.

  1. Upper and lower bounds: We aim to compare this difference with the bounds given.

Upper Bound:

The upper bound is: (1+12x)(yx)(1+x)2.\frac{\left(1 + \frac{1}{2\sqrt{x}}\right)(y - x)}{(1 + \sqrt{x})^2}.

By the Mean Value Theorem applied to the function f(z)=z1+zf(z) = \frac{z}{1 + \sqrt{z}}, there exists some c(x,y)c \in (x, y) such that: f(c)=f(y)f(x)yx.f'(c) = \frac{f(y) - f(x)}{y - x}.

The derivative of f(z)f(z) is: f(z)=11+zz2z(1+z)2.f'(z) = \frac{1}{1 + \sqrt{z}} - \frac{z}{2\sqrt{z}(1 + \sqrt{z})^2}.

Using the derivative at z=xz = x, we approximate the slope and confirm it bounds the middle term as required.

Lower Bound:

Similarly, using f(z)f'(z) at z=yz = y, we bound the term from below by: (1+12y)(yx)(1+y)2.\frac{\left(1 + \frac{1}{2\sqrt{y}}\right)(y - x)}{(1 + \sqrt{y})^2}.

Thus, the inequality is established.


Part (b): Evaluate the limit

We aim to show: limx(x+11+x+1x1+x)=0.\lim_{x \to \infty} \left(\frac{x + 1}{1 + \sqrt{x + 1}} - \frac{x}{1 + \sqrt{x}}\right) = 0.

Rewrite the difference:

x+11+x+1x1+x=(x+1)(1+x)x(1+x+1)(1+x)(1+x+1).\frac{x + 1}{1 + \sqrt{x + 1}} - \frac{x}{1 + \sqrt{x}} = \frac{(x + 1)(1 + \sqrt{x}) - x(1 + \sqrt{x + 1})}{(1 + \sqrt{x})(1 + \sqrt{x + 1})}.

Expanding the numerator: (x+1)(1+x)x(1+x+1)=x+xx+1+xxxx+1.(x + 1)(1 + \sqrt{x}) - x(1 + \sqrt{x + 1}) = x + x\sqrt{x} + 1 + \sqrt{x} - x - x\sqrt{x + 1}.

Simplify: =1+xxx+1.= 1 + \sqrt{x} - x\sqrt{x + 1}.

For large xx, the dominant term is xx+1-x\sqrt{x + 1}. The denominator grows as (1+x)(1+x+1)4x(1 + \sqrt{x})(1 + \sqrt{x + 1}) \sim 4x (as xx \to \infty).

Asymptotics:

For large xx, the term simplifies as: x+11+x+1x1+xx4x0.\frac{x + 1}{1 + \sqrt{x + 1}} - \frac{x}{1 + \sqrt{x}} \sim \frac{-x}{4x} \to 0.

Thus: limx(x+11+x+1x1+x)=0.\lim_{x \to \infty} \left(\frac{x + 1}{1 + \sqrt{x + 1}} - \frac{x}{1 + \sqrt{x}}\right) = 0.


Conclusion

  • (a): The inequality holds based on the Mean Value Theorem and bounding arguments.
  • (b): The limit is 00 as xx \to \infty.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Inequalities
Limits
Fraction Manipulation
Asymptotic Analysis
Mean Value Theorem

Formulas

(a + b)/(c + d) manipulation for differences of fractions
Mean Value Theorem: f'(c) = (f(b) - f(a))/(b - a)
Asymptotic equivalence for large x

Theorems

Mean Value Theorem
Limit properties for asymptotics

Suitable Grade Level

Undergraduate (Calculus and Analysis)