Math Problem Statement

Prove or disprove that 𝑓(𝑛) ∈ π‘œ(𝑔(𝑛)) where 𝑓(𝑛) = 𝑛1.5 + log2 𝑛 and 𝑔(𝑛) = 𝑛2 .

Solution

To prove or disprove that f(n)∈o(g(n))f(n) \in o(g(n)) for the given functions:

  • f(n)=n1.5+log⁑2nf(n) = n^{1.5} + \log_2 n
  • g(n)=n2g(n) = n^2

we need to determine whether f(n)f(n) is asymptotically smaller than g(n)g(n), which means that:

lim⁑nβ†’βˆžf(n)g(n)=0\lim_{{n \to \infty}} \frac{f(n)}{g(n)} = 0

Step-by-Step Analysis

  1. Define the ratio f(n)g(n)\frac{f(n)}{g(n)}:

f(n)g(n)=n1.5+log⁑2nn2\frac{f(n)}{g(n)} = \frac{n^{1.5} + \log_2 n}{n^2}

  1. Simplify the expression:

f(n)g(n)=n1.5n2+log⁑2nn2\frac{f(n)}{g(n)} = \frac{n^{1.5}}{n^2} + \frac{\log_2 n}{n^2}

=1n0.5+log⁑2nn2= \frac{1}{n^{0.5}} + \frac{\log_2 n}{n^2}

  1. Analyze the limit as nβ†’βˆžn \to \infty:

We need to evaluate:

lim⁑nβ†’βˆž(1n0.5+log⁑2nn2)\lim_{{n \to \infty}} \left( \frac{1}{n^{0.5}} + \frac{\log_2 n}{n^2} \right)

  • Consider the first term:

lim⁑nβ†’βˆž1n0.5=0\lim_{{n \to \infty}} \frac{1}{n^{0.5}} = 0

  • Consider the second term:

lim⁑nβ†’βˆžlog⁑2nn2\lim_{{n \to \infty}} \frac{\log_2 n}{n^2}

To compute this, notice that log⁑2n\log_2 n grows much more slowly than n2n^2. Thus, we apply L'Hopital's Rule:

lim⁑nβ†’βˆžlog⁑2nn2=lim⁑nβ†’βˆžddn(log⁑2n)ddn(n2)=lim⁑nβ†’βˆž1nln⁑22n=lim⁑nβ†’βˆž12n2ln⁑2=0\lim_{{n \to \infty}} \frac{\log_2 n}{n^2} = \lim_{{n \to \infty}} \frac{\frac{d}{dn} (\log_2 n)}{\frac{d}{dn} (n^2)} = \lim_{{n \to \infty}} \frac{\frac{1}{n \ln 2}}{2n} = \lim_{{n \to \infty}} \frac{1}{2n^2 \ln 2} = 0

  1. Combine the limits:

lim⁑nβ†’βˆž(1n0.5+log⁑2nn2)=0+0=0\lim_{{n \to \infty}} \left( \frac{1}{n^{0.5}} + \frac{\log_2 n}{n^2} \right) = 0 + 0 = 0

Conclusion

Since the limit is 0, we have:

f(n)∈o(g(n))f(n) \in o(g(n))

Therefore, the statement is true: f(n)=n1.5+log⁑2n∈o(n2)f(n) = n^{1.5} + \log_2 n \in o(n^2).

Would you like more details or have any questions?

Here are 5 related questions to consider:

  1. What is the definition of Big-O notation and how does it differ from Little-o?
  2. How can L'Hopital's Rule be applied in other asymptotic analyses?
  3. What are examples of other functions f(n)f(n) and g(n)g(n) where f(n)∈o(g(n))f(n) \in o(g(n))?
  4. How does the logarithmic function compare to polynomial functions in terms of growth rate?
  5. What are some applications of asymptotic analysis in computer science?

Tip: Remember, f(n)∈o(g(n))f(n) \in o(g(n)) implies that f(n)f(n) grows strictly slower than g(n)g(n) as nβ†’βˆžn \to \infty.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Asymptotic Analysis
Limits
Growth Rates
Logarithmic Functions

Formulas

f(n) = n^1.5 + log2(n)
g(n) = n^2
lim(n β†’ ∞) (f(n)/g(n)) = 0

Theorems

L'Hopital's Rule
Little-o Notation

Suitable Grade Level

Undergraduate Mathematics/Computer Science