Math Problem Statement

Cot theta + tan theta= csc theta times sec theta

Solution

We are tasked with simplifying or proving the identity:

cotθ+tanθ=cscθsecθ\cot\theta + \tan\theta = \csc\theta \cdot \sec\theta

Step 1: Rewrite all terms in terms of sinθ\sin\theta and cosθ\cos\theta

Using the following trigonometric definitions:

  • cotθ=cosθsinθ\cot\theta = \frac{\cos\theta}{\sin\theta}
  • tanθ=sinθcosθ\tan\theta = \frac{\sin\theta}{\cos\theta}
  • cscθ=1sinθ\csc\theta = \frac{1}{\sin\theta}
  • secθ=1cosθ\sec\theta = \frac{1}{\cos\theta}

The equation becomes: cosθsinθ+sinθcosθ=1sinθ1cosθ.\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta} = \frac{1}{\sin\theta} \cdot \frac{1}{\cos\theta}.

Step 2: Simplify the left-hand side (LHS)

The LHS is: cosθsinθ+sinθcosθ.\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}.

Finding a common denominator (sinθcosθ\sin\theta \cos\theta): cos2θ+sin2θsinθcosθ.\frac{\cos^2\theta + \sin^2\theta}{\sin\theta \cos\theta}.

Using the Pythagorean identity cos2θ+sin2θ=1\cos^2\theta + \sin^2\theta = 1, this simplifies to: 1sinθcosθ.\frac{1}{\sin\theta \cos\theta}.

Step 3: Simplify the right-hand side (RHS)

The RHS is: 1sinθ1cosθ.\frac{1}{\sin\theta} \cdot \frac{1}{\cos\theta}.

This simplifies to: 1sinθcosθ.\frac{1}{\sin\theta \cos\theta}.

Step 4: Compare LHS and RHS

Both sides are equal: 1sinθcosθ=1sinθcosθ.\frac{1}{\sin\theta \cos\theta} = \frac{1}{\sin\theta \cos\theta}.

Thus, the identity is proven: cotθ+tanθ=cscθsecθ.\boxed{\cot\theta + \tan\theta = \csc\theta \cdot \sec\theta}.


Do you have any questions or need more details about this proof?

Related Questions:

  1. What is the difference between cotθ\cot\theta and tanθ\tan\theta?
  2. How can Pythagorean identities help simplify trigonometric equations?
  3. What are the domain restrictions for cotθ\cot\theta and tanθ\tan\theta?
  4. Can this identity be derived graphically or geometrically?
  5. How do reciprocal trigonometric functions relate to their primary counterparts?

Tip:

Always look for opportunities to rewrite trigonometric expressions in terms of sinθ\sin\theta and (\cos\theta

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Simplification of Expressions

Formulas

cot(theta) = cos(theta) / sin(theta)
tan(theta) = sin(theta) / cos(theta)
csc(theta) = 1 / sin(theta)
sec(theta) = 1 / cos(theta)
cos^2(theta) + sin^2(theta) = 1

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 10-12