Math Problem Statement

Prove (i) nC0 + nC1 + nC2 + ... + nCn = 2^n. (ii) nC0 - nC1 + nC2 - ... + (-1)^n * nCn = 0, where n is a positive integer.

Solution

Let's solve the two parts of this problem.


Part (i): Prove (n0)+(n1)+(n2)++(nn)=2n\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n

This is a well-known result from the Binomial Theorem.

Binomial Theorem:

The binomial expansion of (1+x)n(1 + x)^n is: (1+x)n=(n0)+(n1)x+(n2)x2++(nn)xn(1 + x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{n}x^n

Substitute x=1x = 1:

(1+1)n=(n0)+(n1)(1)+(n2)(12)++(nn)(1n)(1 + 1)^n = \binom{n}{0} + \binom{n}{1}(1) + \binom{n}{2}(1^2) + \dots + \binom{n}{n}(1^n)

Simplify: 2n=(n0)+(n1)+(n2)++(nn)2^n = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}

Thus, the sum of all binomial coefficients is 2n2^n, proving part (i).


Part (ii): Prove (n0)(n1)+(n2)+(1)n(nn)=0\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = 0

This result also follows from the Binomial Theorem.

Binomial Theorem:

The binomial expansion of (1x)n(1 - x)^n is: (1x)n=(n0)(n1)x+(n2)x2+(1)n(nn)xn(1 - x)^n = \binom{n}{0} - \binom{n}{1}x + \binom{n}{2}x^2 - \dots + (-1)^n \binom{n}{n}x^n

Substitute x=1x = 1:

(11)n=(n0)(n1)(1)+(n2)(12)+(1)n(nn)(1n)(1 - 1)^n = \binom{n}{0} - \binom{n}{1}(1) + \binom{n}{2}(1^2) - \dots + (-1)^n \binom{n}{n}(1^n)

Simplify: 0n=(n0)(n1)+(n2)+(1)n(nn)0^n = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}

Since 0n=00^n = 0 for n>0n > 0, the alternating sum of the binomial coefficients is 00, proving part (ii).


Summary:

  1. Part (i): The sum of all binomial coefficients equals 2n2^n.
  2. Part (ii): The alternating sum of binomial coefficients equals 00.

Would you like detailed step-by-step derivations or a visual explanation of the Binomial Theorem? Let me know!

Related Questions:

  1. How does the Binomial Theorem relate to combinatorics?
  2. Can we generalize these results for multinomials?
  3. How does the proof change if n=0n = 0 or n=1n = 1?
  4. What are real-world applications of the Binomial Theorem in probability?
  5. Can we derive these results graphically using Pascal’s Triangle?

Tip:

The Binomial Theorem is essential for understanding combinatorics and expansions, so practice substituting various values of xx to observe how binomial coefficients behave.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Binomial Theorem
Combinatorics
Algebra

Formulas

nCk = n! / (k!(n-k)!)
(1 + x)^n = Σ (nCk * x^k) for k = 0 to n
(1 - x)^n = Σ (nCk * (-1)^k * x^k) for k = 0 to n

Theorems

Binomial Theorem

Suitable Grade Level

Grades 10-12