Math Problem Statement

If two lines intersect each other, then the vertically opposite angles are equal. Prove that.

Solution

The problem presented asks to prove that vertically opposite angles are equal when two lines intersect. In the image, lines ABAB and CDCD intersect at point OO, forming four angles 1\angle 1, 2\angle 2, 3\angle 3, and 4\angle 4.

Proof:

  1. When two lines intersect at point OO, four angles are formed: 1\angle 1, 2\angle 2, 3\angle 3, and 4\angle 4.

  2. From geometry, we know that adjacent angles formed by intersecting lines are supplementary, meaning their sum equals 180180^\circ. Therefore: 1+2=180(linear pair)\angle 1 + \angle 2 = 180^\circ \quad \text{(linear pair)} 3+4=180(linear pair)\angle 3 + \angle 4 = 180^\circ \quad \text{(linear pair)}

  3. Also, notice that the sum of angles on the opposite side of each line is also 180180^\circ. Therefore: 1+4=180\angle 1 + \angle 4 = 180^\circ 2+3=180\angle 2 + \angle 3 = 180^\circ

  4. By equating the sums of angles from the same line, we find that 1=3\angle 1 = \angle 3 and 2=4\angle 2 = \angle 4. This is because the only way for all angles around point OO to sum up to 360360^\circ while maintaining linear pairs is if the opposite angles are equal.

Thus, vertically opposite angles 1=3\angle 1 = \angle 3 and 2=4\angle 2 = \angle 4, proving the statement.

Would you like more details or have any questions?

Related Questions:

  1. What is the definition of supplementary angles?
  2. How does the property of linear pairs relate to the angle sum around a point?
  3. Can this proof be extended to non-Euclidean geometries?
  4. What other properties arise from the intersection of two lines?
  5. How would you prove the equality of vertical angles using trigonometry?

Tip:

Always check if the angles form linear pairs when dealing with intersecting lines, as this is key to proving vertical angles are equal.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Angles
Intersecting Lines

Formulas

Linear pair: adjacent angles sum up to 180°

Theorems

Vertically Opposite Angles Theorem

Suitable Grade Level

Grades 6-8