Math Problem Statement
Tidak ada bilangan rasional x yang memenuhi persamaan x^2 = 2. Bukti. Andaikan ada bilangan rasional x = m/n, dengan m, n bilangan bulat dan FPB(m,n) = 1, yang memenuhi persamaan x^2 = 2. Maka m^2 = 2n^2 . Ini berarti bahwa m^2 genap, dan akibatnya m juga genap. Tulis m = 2k. Maka 4k^2 = 2n^2 , sehingga n 2 = 2k^2 . Ini berarti bahwa n 2 genap, dan akibatnya n juga genap. Jadi FPB(m,n) ≥ 2, bertentangan dengan asumsi di atas. Soal. Buktikan tidak ada bilangan real x yang memenuhi persamaan x^2 = 3.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Number Theory
Proof by Contradiction
Properties of Rational and Irrational Numbers
Formulas
x^2 = 3
m^2 = 3n^2
Theorems
Fundamental Theorem of Arithmetic
Properties of Even and Odd Numbers
Greatest Common Divisor (GCD) Properties
Suitable Grade Level
High School (Grades 10-12) / Undergraduate Mathematics
Related Recommendation
Proof by Contradiction: No Rational Number satisfies r^3 + r + 1 = 0
Proof of the Irrationality of sqrt(2) Using the Polynomial x^2 - 2
Proof that No Rational Number Squared Equals 5 (Proof by Contradiction)
Proof that 5 - √3 is Irrational: Detailed Explanation
Proving the Irrationality of √2 Using Contradiction