Math Problem Statement

hw14.4 Construct a proof for the argument: ¬(P ↔ Q) ∴ P → ¬Q 1 ¬(P ↔ Q) Using the checker: Notation for logic operators negation: ∼ conjunction: ^ disjunction: v conditional: -> biconditional: <-> universal quantification: Ax or (Ax) existential quantification: Ex or (Ex) Rule names (full and abbreviated) modus ponens ->E modus tollens MT modus tollendo ponens DS double negation DNE addition vI adjunction ^I simplification ^E bicondition <->I equivalence <->E repeat Rep conditional derivation ->I reductio ad absurdum RAA universal instantiation AE universal derivation AI existential instantiation EE existential generalization EI identity introduction =I substitution of identicals =E

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Proof Theory
Logical Equivalences

Formulas

¬(P ↔ Q) ∴ P → ¬Q
De Morgan's Law
Conditional Derivation

Theorems

Biconditional Equivalence
Modus Ponens
Simplification
Conditional Derivation (→I)

Suitable Grade Level

College-level logic or discrete mathematics