Math Problem Statement
Un point P est situé à l'intérieur du parallélogramme ABCD et vérifie PAD = 2PCD et CBP = 2CDP. Montrer que AP = BP = BC.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Triangles
Circles
Formulas
-
Theorems
Theorem of the angle bisector
Properties of isosceles triangles
Circle properties in geometry
Suitable Grade Level
High School
Related Recommendation
Prove that a Point on an Angle Bisector is Equidistant from the Arms of the Angle
Geometry Problem on Angle Relationships with Intersecting Lines
Proof of Perpendicular Segments in Circle Geometry
Proving Equidistance from Angle Bisector using Perpendiculars
Proof Structure Using Triangle Congruence in a Parallelogram