Math Problem Statement

Montrez que la multiplication des nombres complexes est distributive sur l’addition: t(w + z) = (tw) + (tz), où t = r + is, w = u + iv et z = x + iy (avec r, s, u, v, x, y ∈ ℝ).

Solution

To prove the distributive property for complex numbers, we need to show that:

t(w+z)=(tw)+(tz)t(w + z) = (tw) + (tz)

Definitions:

  • t=r+ist = r + is
  • w=u+ivw = u + iv
  • z=x+iyz = x + iy

where r,s,u,v,x,yRr, s, u, v, x, y \in \mathbb{R}.


Step 1: Expand w+zw + z

w+z=(u+iv)+(x+iy)=(u+x)+i(v+y)w + z = (u + iv) + (x + iy) = (u + x) + i(v + y)


Step 2: Multiply tt with w+zw + z

t(w+z)=(r+is)((u+x)+i(v+y))t(w + z) = (r + is)((u + x) + i(v + y))

Using the distributive property of real numbers and i2=1i^2 = -1: t(w+z)=r(u+x)+ri(v+y)+is(u+x)+i2s(v+y)t(w + z) = r(u + x) + r i(v + y) + is(u + x) + i^2 s(v + y) t(w+z)=r(u+x)+ir(v+y)+is(u+x)s(v+y)t(w + z) = r(u + x) + ir(v + y) + is(u + x) - s(v + y) t(w+z)=(r(u+x)s(v+y))+i(r(v+y)+s(u+x))t(w + z) = \big(r(u + x) - s(v + y)\big) + i\big(r(v + y) + s(u + x)\big)


Step 3: Expand twtw and tztz separately

  1. tw=(r+is)(u+iv)tw = (r + is)(u + iv): tw=ru+riv+isu+i2svtw = ru + riv + isu + i^2sv tw=rusv+i(rv+su)tw = ru - sv + i(rv + su)

  2. tz=(r+is)(x+iy)tz = (r + is)(x + iy): tz=rx+riy+isx+i2sytz = rx + riy + isx + i^2sy tz=rxsy+i(ry+sx)tz = rx - sy + i(ry + sx)


Step 4: Add twtw and tztz

tw+tz=((rusv)+i(rv+su))+((rxsy)+i(ry+sx))tw + tz = \big((ru - sv) + i(rv + su)\big) + \big((rx - sy) + i(ry + sx)\big) tw+tz=(rusv+rxsy)+i(rv+su+ry+sx)tw + tz = \big(ru - sv + rx - sy\big) + i\big(rv + su + ry + sx\big)


Step 5: Compare t(w+z)t(w + z) and tw+tztw + tz

  1. From t(w+z)t(w + z), we have: t(w+z)=(r(u+x)s(v+y))+i(r(v+y)+s(u+x))t(w + z) = \big(r(u + x) - s(v + y)\big) + i\big(r(v + y) + s(u + x)\big)

  2. From tw+tztw + tz, we have: tw+tz=(ru+rxsvsy)+i(rv+ry+su+sx)tw + tz = \big(ru + rx - sv - sy\big) + i\big(rv + ry + su + sx\big)

Both expressions are identical. Thus: t(w+z)=tw+tzt(w + z) = tw + tz


Conclusion:

The multiplication of complex numbers is distributive over addition.


Would you like a more detailed breakdown of any step or additional examples? Here are some related questions:

  1. How do you prove associativity of complex number multiplication?
  2. Why is i2=1i^2 = -1 crucial in these calculations?
  3. Can you illustrate this property geometrically in the complex plane?
  4. How does this distributive property relate to vector addition?
  5. What happens if t,w,zt, w, z are purely imaginary numbers?

Tip: Always expand terms systematically to avoid missing negative signs, especially when working with i2=1i^2 = -1.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Distributive Property
Algebra

Formulas

t(w + z) = (tw) + (tz)
i^2 = -1
(a + bi)(c + di) = (ac - bd) + i(ad + bc)

Theorems

Distributive Property of Multiplication over Addition

Suitable Grade Level

Undergraduate Level or Advanced High School (Grades 11-12)