Math Problem Statement

prove that cos(0) + cos(2pi/n) + cos(4pi/n) + .... + cos(2pi(n-1)/n) = 0, while n>= 1

Solution

To prove that

cos(0)+cos(2πn)+cos(4πn)++cos(2π(n1)n)=0\cos(0) + \cos\left(\frac{2\pi}{n}\right) + \cos\left(\frac{4\pi}{n}\right) + \ldots + \cos\left(\frac{2\pi(n-1)}{n}\right) = 0

for n1n \geq 1, let's proceed step by step:


Step 1: Represent the sum using exponential notation

Using Euler's formula, we know:

cos(x)=eix+eix2.\cos(x) = \frac{e^{ix} + e^{-ix}}{2}.

So, the given sum can be rewritten as:

k=0n1cos(2πkn)=12k=0n1(ei2πkn+ei2πkn).\sum_{k=0}^{n-1} \cos\left(\frac{2\pi k}{n}\right) = \frac{1}{2} \sum_{k=0}^{n-1} \left( e^{i\frac{2\pi k}{n}} + e^{-i\frac{2\pi k}{n}} \right).

Split this into two separate sums:

k=0n1cos(2πkn)=12(k=0n1ei2πkn+k=0n1ei2πkn).\sum_{k=0}^{n-1} \cos\left(\frac{2\pi k}{n}\right) = \frac{1}{2} \left( \sum_{k=0}^{n-1} e^{i\frac{2\pi k}{n}} + \sum_{k=0}^{n-1} e^{-i\frac{2\pi k}{n}} \right).


Step 2: Analyze the exponential sum

Let S=k=0n1ei2πknS = \sum_{k=0}^{n-1} e^{i\frac{2\pi k}{n}}. This is a geometric progression with the first term 11 (when k=0k=0) and the common ratio ei2πne^{i\frac{2\pi}{n}}.

The sum of a geometric series is given by:

S=1rn1r,S = \frac{1 - r^n}{1 - r},

where rr is the common ratio. Here, r=ei2πnr = e^{i\frac{2\pi}{n}}, and rn=(ei2πn)n=ei2π=1r^n = \left(e^{i\frac{2\pi}{n}}\right)^n = e^{i2\pi} = 1. Thus:

S=111ei2πn=0.S = \frac{1 - 1}{1 - e^{i\frac{2\pi}{n}}} = 0.

This shows:

k=0n1ei2πkn=0.\sum_{k=0}^{n-1} e^{i\frac{2\pi k}{n}} = 0.


Step 3: The symmetry of the terms

Using the property of complex conjugates:

k=0n1ei2πkn=k=0n1ei2πkn.\sum_{k=0}^{n-1} e^{-i\frac{2\pi k}{n}} = \overline{\sum_{k=0}^{n-1} e^{i\frac{2\pi k}{n}}}.

Since k=0n1ei2πkn=0\sum_{k=0}^{n-1} e^{i\frac{2\pi k}{n}} = 0, we also have:

k=0n1ei2πkn=0.\sum_{k=0}^{n-1} e^{-i\frac{2\pi k}{n}} = 0.


Step 4: Combine the results

Substitute back into the original equation:

k=0n1cos(2πkn)=12(k=0n1ei2πkn+k=0n1ei2πkn).\sum_{k=0}^{n-1} \cos\left(\frac{2\pi k}{n}\right) = \frac{1}{2} \left( \sum_{k=0}^{n-1} e^{i\frac{2\pi k}{n}} + \sum_{k=0}^{n-1} e^{-i\frac{2\pi k}{n}} \right).

Since both exponential sums are 00, we have:

k=0n1cos(2πkn)=12(0+0)=0.\sum_{k=0}^{n-1} \cos\left(\frac{2\pi k}{n}\right) = \frac{1}{2} (0 + 0) = 0.


Conclusion

Thus, we have shown:

cos(0)+cos(2πn)+cos(4πn)++cos(2π(n1)n)=0,\cos(0) + \cos\left(\frac{2\pi}{n}\right) + \cos\left(\frac{4\pi}{n}\right) + \ldots + \cos\left(\frac{2\pi(n-1)}{n}\right) = 0,

for n1n \geq 1.


Do you have any questions, or would you like further clarification?


Related Questions:

  1. How can we derive the geometric series formula used here?
  2. What happens if we use sine terms instead of cosine?
  3. How does the symmetry of the unit circle affect this sum?
  4. Can we generalize this proof to other roots of unity?
  5. What is the significance of this result in Fourier analysis?

Tip:

Understanding the symmetry of the unit circle and the properties of roots of unity is crucial for solving problems involving trigonometric sums.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Complex Numbers
Geometric Series
Roots of Unity

Formulas

cos(x) = (e^(ix) + e^(-ix)) / 2
Sum of geometric series: S = (1 - r^n) / (1 - r)

Theorems

Roots of Unity Theorem
Geometric Series Sum Formula
Euler's Formula

Suitable Grade Level

Undergraduate/Advanced High School (Grades 11-12)