Math Problem Statement
把级数
的项重新排列如下:先依次取 $p$ 个正项,接着依次取 $q$个负 项,再接着依次取 $p$ 个正项,如此继续下去。证明:所得的新级数收敛的充分必要条件为 $p = q$;当 $p > q$ 时,新级数发散到 $+\infty$;当 $p < q$ 时,新级数发散到 $-\infty$。
第1小问证明所得的新级数收敛的充分必要条件为 $p = q$。我认为充分性可以这样证明,首先p=q=1的时候,刚好新级数就是原级数,根据莱布尼茨定理是条件收敛的。接下来用数学归纳法,假设p= q=k-1(k为大于1的正整数)时,新级数收敛。下证p=q=k的时候。 你认为我的思路对吗?
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Series and Sequences
Conditional Convergence
Rearrangement of Series
Formulas
Alternating series: $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ where $a_n > 0$
Theorems
Leibniz's Alternating Series Test
Convergence of Rearranged Series
Suitable Grade Level
Undergraduate Mathematics
Related Recommendation
Prove Convergence of p-Series and Absolute Convergence of Series
Convergence Test for Series with Powers of n: P-Series Analysis
Convergence of Series: Investigating (-1)^(n+1)/√2n+1
Analyzing Convergence and Divergence of Alternating Series Using Leibniz's Test
Solving Infinite Series and Riemann Zeta Function Problem