Math Problem Statement

Bestäm projektionen av v = (3, 2, 4, -2) på delrummet W som spänns upp av u1 = (1, 1, 1, 1) och u2 = (1, 1, 1, -1).

Solution

The problem asks to compute the projection of the vector v=(3,2,4,2)v = (3, 2, 4, -2) onto the subspace WW spanned by u1=(1,1,1,1)u_1 = (1, 1, 1, 1) and u2=(1,1,1,1)u_2 = (1, 1, 1, -1).


Solution:

The projection of a vector vv onto a subspace WW spanned by vectors u1,u2,,uku_1, u_2, \dots, u_k can be computed using the Gram-Schmidt procedure or directly using the projection formula:

projW(v)=i=1kv,uiui,uiui\text{proj}_W(v) = \sum_{i=1}^k \frac{\langle v, u_i \rangle}{\langle u_i, u_i \rangle} u_i

Here, ,\langle \cdot, \cdot \rangle denotes the dot product.

  1. Step 1: Compute dot products of vv with u1u_1 and u2u_2:

    • v,u1=31+21+41+(2)1=3+2+42=7\langle v, u_1 \rangle = 3 \cdot 1 + 2 \cdot 1 + 4 \cdot 1 + (-2) \cdot 1 = 3 + 2 + 4 - 2 = 7
    • v,u2=31+21+41+(2)(1)=3+2+4+2=11\langle v, u_2 \rangle = 3 \cdot 1 + 2 \cdot 1 + 4 \cdot 1 + (-2) \cdot (-1) = 3 + 2 + 4 + 2 = 11
  2. Step 2: Compute the magnitudes squared of u1u_1 and u2u_2:

    • u1,u1=12+12+12+12=4\langle u_1, u_1 \rangle = 1^2 + 1^2 + 1^2 + 1^2 = 4
    • u2,u2=12+12+12+(1)2=4\langle u_2, u_2 \rangle = 1^2 + 1^2 + 1^2 + (-1)^2 = 4
  3. Step 3: Compute the projections of vv onto u1u_1 and u2u_2:

    • proju1(v)=v,u1u1,u1u1=74(1,1,1,1)=(74,74,74,74)\text{proj}_{u_1}(v) = \frac{\langle v, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 = \frac{7}{4} (1, 1, 1, 1) = \left( \frac{7}{4}, \frac{7}{4}, \frac{7}{4}, \frac{7}{4} \right)
    • proju2(v)=v,u2u2,u2u2=114(1,1,1,1)=(114,114,114,114)\text{proj}_{u_2}(v) = \frac{\langle v, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 = \frac{11}{4} (1, 1, 1, -1) = \left( \frac{11}{4}, \frac{11}{4}, \frac{11}{4}, -\frac{11}{4} \right)
  4. Step 4: Add the two projections to find projW(v)\text{proj}_W(v):

    projW(v)=proju1(v)+proju2(v)\text{proj}_W(v) = \text{proj}_{u_1}(v) + \text{proj}_{u_2}(v)

    Add the components: projW(v)=(74+114,74+114,74+114,74114)\text{proj}_W(v) = \left( \frac{7}{4} + \frac{11}{4}, \frac{7}{4} + \frac{11}{4}, \frac{7}{4} + \frac{11}{4}, \frac{7}{4} - \frac{11}{4} \right)

    Simplify: projW(v)=(184,184,184,44)=(92,92,92,1)\text{proj}_W(v) = \left( \frac{18}{4}, \frac{18}{4}, \frac{18}{4}, \frac{-4}{4} \right) = \left( \frac{9}{2}, \frac{9}{2}, \frac{9}{2}, -1 \right)


Final Answer:

The projection of vv onto WW is: projW(v)=(92,92,92,1)\text{proj}_W(v) = \left( \frac{9}{2}, \frac{9}{2}, \frac{9}{2}, -1 \right)


Would you like further clarification or a deeper explanation of any step?


Related Questions:

  1. What is the geometric interpretation of projecting vv onto WW?
  2. How does the Gram-Schmidt process relate to projections?
  3. Can you compute the orthogonal complement of vv with respect to WW?
  4. What are the properties of projections onto subspaces?
  5. How would the process change if WW were spanned by three vectors?

Tip:

Always check if the spanning vectors u1,u2,u_1, u_2, \dots are orthogonal, as this simplifies the projection calculation significantly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Vector Projection
Subspaces
Dot Product

Formulas

Projection formula: proj_W(v) = Σ (⟨v, ui⟩ / ⟨ui, ui⟩) * ui
Dot product: ⟨u, v⟩ = Σ (ui * vi)

Theorems

Projection onto Subspaces

Suitable Grade Level

Undergraduate Level (Linear Algebra)