Math Problem Statement

Find the orthogonal projection of v onto the subspace W spanned by the vectors ui. (You may assume that the vectors ui are orthogonal.) v =

6

−4 8 −6 , u1 =

1

1 0 0 , u2 =

1

−1 −1 1 , u3 =

0

0 1 1

Solution

To find the orthogonal projection of vv onto the subspace WW spanned by the orthogonal vectors u1,u2,u3u_1, u_2, u_3, we follow these steps:

Formula for the Orthogonal Projection

The orthogonal projection of vv onto WW is given by: ProjW(v)=i=13Projui(v),\text{Proj}_W(v) = \sum_{i=1}^3 \text{Proj}_{u_i}(v), where the projection onto each vector uiu_i is: Projui(v)=v,uiui,uiui.\text{Proj}_{u_i}(v) = \frac{\langle v, u_i \rangle}{\langle u_i, u_i \rangle} u_i.

Step 1: Compute Projections

Compute Proju1(v)\text{Proj}_{u_1}(v)

  1. Compute v,u1\langle v, u_1 \rangle: v,u1=6(1)+(4)(1)+8(0)+(6)(0)=64=2.\langle v, u_1 \rangle = 6(1) + (-4)(1) + 8(0) + (-6)(0) = 6 - 4 = 2.
  2. Compute u1,u1\langle u_1, u_1 \rangle: u1,u1=12+12+02+02=1+1=2.\langle u_1, u_1 \rangle = 1^2 + 1^2 + 0^2 + 0^2 = 1 + 1 = 2.
  3. Compute Proju1(v)\text{Proj}_{u_1}(v): Proju1(v)=v,u1u1,u1u1=22[1100]=[1100].\text{Proj}_{u_1}(v) = \frac{\langle v, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 = \frac{2}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}.

Compute Proju2(v)\text{Proj}_{u_2}(v)

  1. Compute v,u2\langle v, u_2 \rangle: v,u2=6(1)+(4)(1)+8(1)+(6)(1)=6+486=4.\langle v, u_2 \rangle = 6(1) + (-4)(-1) + 8(-1) + (-6)(1) = 6 + 4 - 8 - 6 = -4.
  2. Compute u2,u2\langle u_2, u_2 \rangle: u2,u2=12+(1)2+(1)2+12=1+1+1+1=4.\langle u_2, u_2 \rangle = 1^2 + (-1)^2 + (-1)^2 + 1^2 = 1 + 1 + 1 + 1 = 4.
  3. Compute Proju2(v)\text{Proj}_{u_2}(v): Proju2(v)=v,u2u2,u2u2=44[1111]=[1111].\text{Proj}_{u_2}(v) = \frac{\langle v, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 = \frac{-4}{4} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix}.

Compute Proju3(v)\text{Proj}_{u_3}(v)

  1. Compute v,u3\langle v, u_3 \rangle: v,u3=6(0)+(4)(0)+8(1)+(6)(1)=86=2.\langle v, u_3 \rangle = 6(0) + (-4)(0) + 8(1) + (-6)(1) = 8 - 6 = 2.
  2. Compute u3,u3\langle u_3, u_3 \rangle: u3,u3=02+02+12+12=1+1=2.\langle u_3, u_3 \rangle = 0^2 + 0^2 + 1^2 + 1^2 = 1 + 1 = 2.
  3. Compute Proju3(v)\text{Proj}_{u_3}(v): Proju3(v)=v,u3u3,u3u3=22[0011]=[0011].\text{Proj}_{u_3}(v) = \frac{\langle v, u_3 \rangle}{\langle u_3, u_3 \rangle} u_3 = \frac{2}{2} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}.

Step 2: Add the Projections

ProjW(v)=Proju1(v)+Proju2(v)+Proju3(v).\text{Proj}_W(v) = \text{Proj}_{u_1}(v) + \text{Proj}_{u_2}(v) + \text{Proj}_{u_3}(v). Substitute the values: ProjW(v)=[1100]+[1111]+[0011]=[0220].\text{Proj}_W(v) = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \end{bmatrix}.

Final Answer:

The orthogonal projection of vv onto WW is: ProjW(v)=[0220].\text{Proj}_W(v) = \begin{bmatrix} 0 \\ 2 \\ 2 \\ 0 \end{bmatrix}.

Would you like further explanation or details?


Related Questions:

  1. What is the geometric interpretation of the orthogonal projection?
  2. How would the process change if the uiu_i vectors were not orthogonal?
  3. Can you verify this projection by computing the orthogonal complement of vv in WW?
  4. What are the properties of the projection matrix associated with this subspace?
  5. How does the Gram-Schmidt process relate to this problem?

Tip:

Always verify the orthogonality of the uiu_i vectors before using them in projections to ensure accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Orthogonal Projections
Vector Spaces
Dot Product

Formulas

Orthogonal projection formula: Proj_u(v) = (⟨v, u⟩ / ⟨u, u⟩) * u
Projection onto a subspace: Proj_W(v) = Σ Proj_ui(v) for all i

Theorems

Orthogonality in Vector Spaces
Pythagorean Theorem in Inner Product Spaces

Suitable Grade Level

Undergraduate (Linear Algebra Course)