Math Problem Statement
we roll a 6-sided die twice, what is the probability of getting 2,5
Solution
When rolling a 6-sided die twice, the possible outcomes for the sum of the rolls range from 2 to 12. Let's calculate the probability of getting a sum of 2 or 5.
1. Probability of getting a sum of 2:
- The only way to get a sum of 2 is by rolling a 1 on both dice: .
- There is 1 favorable outcome.
2. Probability of getting a sum of 5:
- To get a sum of 5, the following outcomes are possible: .
- There are 4 favorable outcomes.
Total Possible Outcomes:
- Since each die has 6 faces, and they are rolled independently, the total number of possible outcomes is .
Calculating Probabilities:
- Probability of getting a sum of 2: .
- Probability of getting a sum of 5: .
Combined Probability:
To find the probability of getting either a sum of 2 or a sum of 5, we add these probabilities:
So, the probability of getting a sum of either 2 or 5 is .
Would you like more details or have any questions?
Here are five related questions:
- What is the probability of getting a sum of 7 or 11 when rolling two 6-sided dice?
- How do you calculate the probability of getting a specific sum with two dice?
- What is the probability of getting a sum of 8 with two 6-sided dice?
- How does the probability distribution of sums change with more dice?
- What are the most likely sums when rolling two 6-sided dice, and why?
Tip: When calculating probabilities for dice rolls, consider all possible combinations of dice that result in the desired outcome.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Probability
Dice Rolls
Combinatorics
Formulas
-
Theorems
-
Suitable Grade Level
Grades 7-9
Related Recommendation
Understanding Probability in Dice Rolling: Probability of Getting 2.5 with Two 6-Sided Dice
Probability of Rolling Two Dice Summing to 9
Probability of Outcomes in Rolling Two Six-Faced Dice
Probability of Sums from Rolling Two Dice: At Most 3, Exactly 6, At Least 9
Sum of Two Unusual Dice Rolls - Probability and Likelihood