Math Problem Statement

Случайная величина X задана интегральным законом F(x). Найти параметр C, дифференциальный закон распределения, построить графики f(x) и F(x), основные характеристики, и вероятность P(1 ≤ X ≤ 3).

Solution

Let's solve the problem step by step based on the information given in the image:


Problem Statement:

We are given a cumulative distribution function (CDF) F(x)F(x) defined as:

\begin{cases} 0, & x \leq 0 \\ \frac{x^2}{C + x^2}, & x > 0 \end{cases}$$ We are tasked with solving the following: 1. Find the parameter $$C$$. 2. Derive the probability density function (PDF), $$f(x)$$. 3. Plot the graphs of $$f(x)$$ and $$F(x)$$. 4. Find the main characteristics (mean, variance, etc.). 5. Find $$P(1 \leq x \leq 3)$$. --- ### Solution: #### **Step 1: Find the parameter $$C$$** The cumulative distribution function $$F(x)$$ must satisfy the condition: $$\lim_{x \to \infty} F(x) = 1.$$ From $$F(x) = \frac{x^2}{C + x^2}$$, as $$x \to \infty$$: $$\frac{x^2}{C + x^2} \to 1 \implies C = 1.$$ Thus, $$C = 1$$. --- #### **Step 2: Derive the PDF, $$f(x)$$** The probability density function is the derivative of the CDF: $$f(x) = \frac{d}{dx} F(x).$$ For $$x > 0$$, using $$F(x) = \frac{x^2}{1 + x^2}$$: $$f(x) = \frac{d}{dx} \left( \frac{x^2}{1 + x^2} \right).$$ Using the quotient rule, $$\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2}$$, where $$u = x^2$$ and $$v = 1 + x^2$$: $$f(x) = \frac{2x(1 + x^2) - x^2(2x)}{(1 + x^2)^2}.$$ Simplify: $$f(x) = \frac{2x + 2x^3 - 2x^3}{(1 + x^2)^2} = \frac{2x}{(1 + x^2)^2}.$$ Thus, the PDF is: $$f(x) = \begin{cases} 0, & x \leq 0 \\ \frac{2x}{(1 + x^2)^2}, & x > 0 \end{cases}.$$ --- #### **Step 3: Plot the graphs of $$f(x)$$ and $$F(x)$$** The graphs of $$F(x)$$ and $$f(x)$$ can be plotted. I can generate them for you if you'd like. --- #### **Step 4: Main characteristics** To find the main characteristics such as the mean $$\mathbb{E}[X]$$ and variance $$\text{Var}(X)$$, we need to evaluate the following: 1. **Mean:** $$\mathbb{E}[X] = \int_{0}^{\infty} x f(x) dx = \int_{0}^{\infty} x \cdot \frac{2x}{(1 + x^2)^2} dx.$$ Simplify: $$\mathbb{E}[X] = \int_{0}^{\infty} \frac{2x^2}{(1 + x^2)^2} dx.$$ Let $$u = 1 + x^2$$, so $$du = 2x dx$$. When $$x = 0, u = 1$$, and as $$x \to \infty, u \to \infty$$. The integral becomes: \[ \mathbb{E}[X] = \int_{1}^{\infty} \frac{1}{u^2} du = \left[ -\frac{1}{u} \right]_{1}^{\infty}. \] Evaluate: $$\mathbb{E}[X] = 0 - (-1) = 1.$$ Thus, the mean is $$\mathbb{E}[X] = 1$$. 2. **Variance:** The variance is: \[ \text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2. \] First, find $$\mathbb{E}[X^2]$$: $$\mathbb{E}[X^2] = \int_{0}^{\infty} x^2 f(x) dx = \int_{0}^{\infty} x^2 \cdot \frac{2x}{(1 + x^2)^2} dx.$$ Simplify: $$\mathbb{E}[X^2] = \int_{0}^{\infty} \frac{2x^3}{(1 + x^2)^2} dx.$$ Using the same substitution $$u = 1 + x^2$$, $$du = 2x dx$$, and $$x^2 = u - 1$$, the integral becomes: $$\mathbb{E}[X^2] = \int_{1}^{\infty} \frac{u - 1}{u^2} du.$$ Split into two terms: $$\mathbb{E}[X^2] = \int_{1}^{\infty} \frac{1}{u} du - \int_{1}^{\infty} \frac{1}{u^2} du.$$ Evaluate each term: \[ \int_{1}^{\infty} \frac{1}{u} du = \ln(u) \Big|_{1}^{\infty} = \infty \quad \text{(Correct Integrals needed adjust

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Theory
Cumulative Distribution Function (CDF)
Probability Density Function (PDF)
Integration
Differentiation

Formulas

F(x) = 0 for x ≤ 0; F(x) = x^2 / (C + x^2) for x > 0
f(x) = dF(x)/dx = derivative of F(x)
P(a ≤ X ≤ b) = ∫[a, b] f(x) dx

Theorems

Properties of CDFs
Normalization condition for PDFs
Basic integration and substitution rules

Suitable Grade Level

Undergraduate (Mathematics or Statistics)