Math Problem Statement

if f(x)=k(1+x) in 2<x<5 is the pdf of a continous random variable n.find (i) p(x<4)(ii)p(3<x<4)

Solution

To solve for kk and evaluate the given probabilities, we first need to find the normalization constant to ensure that f(x)f(x) is a valid probability density function (PDF).

Given the PDF: f(x)=k(1+x)for2<x<5f(x) = k(1 + x) \quad \text{for} \quad 2 < x < 5

Step 1: Find kk such that f(x)f(x) is normalized.

The total integral over the interval 2<x<52 < x < 5 should equal 1: 25k(1+x)dx=1\int_{2}^{5} k(1 + x) \, dx = 1

Calculating the integral: k25(1+x)dx=k[x+x22]25k \int_{2}^{5} (1 + x) \, dx = k \left[ x + \frac{x^2}{2} \right]_{2}^{5}

Evaluating at the bounds: [ k \left[ \left(5 + \frac{5^2}{2}\right) - \left(2 + \frac{2^2}{2}\right) \right] = k \left[ \left(5 + \frac{25}{2}\right) - \left(2 + 2\right) \right] ]

Simplifying further: k[5+12.54]=k13.5k \left[ 5 + 12.5 - 4 \right] = k \cdot 13.5

Setting this equal to 1: k13.5=1k=113.5k \cdot 13.5 = 1 \quad \Rightarrow \quad k = \frac{1}{13.5}

Step 2: Find P(x<4)P(x < 4)

P(x<4)=24113.5(1+x)dxP(x < 4) = \int_{2}^{4} \frac{1}{13.5}(1 + x) \, dx

Solving the integral: 113.524(1+x)dx=113.5[x+x22]24\frac{1}{13.5} \int_{2}^{4} (1 + x) \, dx = \frac{1}{13.5} \left[ x + \frac{x^2}{2} \right]_{2}^{4}

Evaluating at the bounds: [ \frac{1}{13.5} \left[ (4 + \frac{16}{2}) - (2 + 2) \right] = \frac{1}{13.5} \left[ 4 + 8 - 4 \right] = \frac{8}{13.5} ]

Simplifying: P(x<4)=813.50.593P(x < 4) = \frac{8}{13.5} \approx 0.593

Step 3: Find P(3<x<4)P(3 < x < 4)

P(3<x<4)=34113.5(1+x)dxP(3 < x < 4) = \int_{3}^{4} \frac{1}{13.5}(1 + x) \, dx

Solving the integral: 113.534(1+x)dx=113.5[x+x22]34\frac{1}{13.5} \int_{3}^{4} (1 + x) \, dx = \frac{1}{13.5} \left[ x + \frac{x^2}{2} \right]_{3}^{4}

Evaluating at the bounds: [ \frac{1}{13.5} \left[ (4 + \frac{16}{2}) - (3 + \frac{9}{2}) \right] = \frac{1}{13.5} \left[ 12 - 7.5 \right] = \frac{4.5}{13.5} ]

Simplifying: P(3<x<4)=4.513.50.333P(3 < x < 4) = \frac{4.5}{13.5} \approx 0.333

Final Answers:

  1. P(x<4)0.593P(x < 4) \approx 0.593
  2. P(3<x<4)0.333P(3 < x < 4) \approx 0.333

Would you like more detailed steps or have any questions?

Follow-up Questions:

  1. How do we determine if a given function is a valid PDF?
  2. What are the properties of continuous probability distributions?
  3. Can you explain how normalization works in probability?
  4. What is the significance of calculating probabilities over different intervals?
  5. How can we interpret the results of P(x<4)P(x < 4) and P(3<x<4)P(3 < x < 4)?

Tip:

Always ensure that the total integral of a PDF over its entire range equals 1 to confirm it is a valid distribution.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability
Continuous Probability Distributions
Normalization of Probability Density Functions

Formulas

Integral of PDF over its range = 1 (normalization condition)
P(a < X < b) = ∫[a,b] f(x) dx

Theorems

Normalization Condition for PDF

Suitable Grade Level

Undergraduate