Math Problem Statement

Die Nachfrage nach einem Produkt sei durch die Funktion f(p) = 480 - (p + 11)^2 beschrieben. Berechnen Sie die Preiselastizität der Nachfrage bezüglich des Preises und bestimmen Sie sie für p = 3.

Solution

The task presented involves calculating the price elasticity of demand using the given demand function:

f(p)=480(p+11)2f(p) = 480 - (p + 11)^2

Steps to Solve

a) Elasticity Formula

The elasticity of demand, denoted by ε(p)\varepsilon(p), is given by the formula: ε(p)=f(p)pf(p)\varepsilon(p) = \frac{-f'(p) \cdot p}{f(p)}

  1. Differentiate f(p)f(p) with respect to pp: f(p)=ddp[480(p+11)2]=2(p+11)f'(p) = \frac{d}{dp}[480 - (p + 11)^2] = -2(p + 11)

  2. Substitute f(p)f'(p) into the elasticity formula: ε(p)=(2(p+11))p480(p+11)2=2(p+11)p480(p+11)2\varepsilon(p) = \frac{-(-2(p + 11)) \cdot p}{480 - (p + 11)^2} = \frac{2(p + 11)p}{480 - (p + 11)^2}

Thus, the elasticity function is: ε(p)=2(p+11)p480(p+11)2.\varepsilon(p) = \frac{2(p + 11)p}{480 - (p + 11)^2}.

b) Elasticity at p=3p = 3

  1. Substitute p=3p = 3 into the formula: ε(3)=2(3+11)(3)480(3+11)2.\varepsilon(3) = \frac{2(3 + 11)(3)}{480 - (3 + 11)^2}.

  2. Simplify the terms:

    • 3+11=143 + 11 = 14,
    • (3+11)2=142=196(3 + 11)^2 = 14^2 = 196,
    • 480196=284480 - 196 = 284.

    So: ε(3)=2(14)(3)284=84284.\varepsilon(3) = \frac{2(14)(3)}{284} = \frac{84}{284}.

  3. Simplify 84284\frac{84}{284}: ε(3)0.296(roundedto2decimalplaces).\varepsilon(3) \approx 0.296 (rounded to 2 decimal places).


Final Answers

  • a) ε(p)=2(p+11)p480(p+11)2\varepsilon(p) = \frac{2(p + 11)p}{480 - (p + 11)^2}
  • b) ε(3)0.30\varepsilon(3) \approx 0.30

Would you like a deeper explanation of any step?
Here are 5 questions for further exploration:

  1. What does elasticity represent in economics?
  2. How is price elasticity interpreted for ε(p)>1\varepsilon(p) > 1, ε(p)=1\varepsilon(p) = 1, and ε(p)<1\varepsilon(p) < 1?
  3. How can we use elasticity to predict changes in revenue?
  4. How does the quadratic demand function affect elasticity compared to linear demand functions?
  5. What implications does an elasticity of 0.30 have for the producer’s pricing strategy?

Tip: Always check the units and scaling when calculating elasticity—it helps interpret the results accurately!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Elasticity of Demand
Derivatives
Quadratic Functions

Formulas

f(p) = 480 - (p + 11)^2
ε(p) = -f'(p) * p / f(p)

Theorems

Derivative Rules for Polynomials
Elasticity Interpretation in Economics

Suitable Grade Level

Undergraduate Economics or Mathematics