Math Problem Statement

Use your regression equation to predict the size of a house that costs 450 thousand dollars.

Use your regression equation to predict the size of a house that costs 450 thousand dollars.

Solution

To predict the size of a house costing 450 thousand dollars, we can use linear regression. Here's a step-by-step approach:

  1. Set up your data:

    • Size (X): 1200, 1339, 1382, 2351, 2369, 3600
    • Price (Y): 320, 430, 389, 635, 689, 750
  2. Calculate the necessary statistics:

    • Means: Xˉ\bar{X} and Yˉ\bar{Y}
    • Slope (b) = (XiXˉ)(YiYˉ)(XiXˉ)2\frac{\sum{(X_i - \bar{X})(Y_i - \bar{Y})}}{\sum{(X_i - \bar{X})^2}}
    • Intercept (a) = YˉbXˉ\bar{Y} - b\bar{X}
  3. Substitute to predict:

    • Regression equation: Y=a+bXY = a + bX
    • For 450: 450=a+bX450 = a + bX
    • Solve for X.

Let's calculate:

  • Mean of X (Xˉ\bar{X}): (1200+1339+1382+2351+2369+3600)/62040.17(1200 + 1339 + 1382 + 2351 + 2369 + 3600)/6 \approx 2040.17

  • Mean of Y (Yˉ\bar{Y}): (320+430+389+635+689+750)/6535.5(320 + 430 + 389 + 635 + 689 + 750)/6 \approx 535.5

  • Applying the formula for the slope (b):

b=(XiXˉ)(YiYˉ)(XiXˉ)2b = \frac{\sum{(X_i - \bar{X})(Y_i - \bar{Y})}}{\sum{(X_i - \bar{X})^2}}

Calculating the sums:

(XiXˉ)(YiYˉ)4,548,144\sum{(X_i - \bar{X})(Y_i - \bar{Y})} \approx 4,548,144 (XiXˉ)22,130,845\sum{(X_i - \bar{X})^2} \approx 2,130,845

Thus,

b4,548,1442,130,8452.13b \approx \frac{4,548,144}{2,130,845} \approx 2.13

  • Intercept (a):

a=YˉbXˉ535.52.13(2040.17)1875.86a = \bar{Y} - b\bar{X} \approx 535.5 - 2.13(2040.17) \approx -1875.86

  • Regression equation:

Y=1875.86+2.13XY = -1875.86 + 2.13X

Now, to find the size (X) for a price (Y) of 450:

450=1875.86+2.13X450 = -1875.86 + 2.13X 2.13X=450+1875.862.13X = 450 + 1875.86 X2325.862.131091.95X \approx \frac{2325.86}{2.13} \approx 1091.95

Thus, the predicted size of a house costing 450 thousand dollars is approximately 1092 square feet.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Regression
Statistics
Slope and Intercept Calculation

Formulas

Mean formula: \(\bar{X} = \frac{\sum X_i}{n}\)
Slope: \( b = \frac{\sum{(X_i - \bar{X})(Y_i - \bar{Y})}}{\sum{(X_i - \bar{X})^2}} \)
Intercept: \( a = \bar{Y} - b\bar{X} \)
Linear Regression Equation: \( Y = a + bX \)

Theorems

Linear Regression Theorem

Suitable Grade Level

Grades 10-12