Math Problem Statement

The cases that make up this dataset are types of cars. The data include the engine size or displacement​ (in liters) and horsepower​ (HP) of 6767 vehicles sold in a certain country in 2011. Use the SRM of the horsepower on the engine displacement to complete parts​ (a) through (c).

Data table: Displacement (liters) Horsepower

4.4 428

5.3 527

2.9 330

4.3 346

1.9 205

2.1 262

2.9 224

2.9 303

4.2 404

2.2 318

4.2 409

1.7 121

1.7 180

4.6 570

2.5 170

2.6 165

2.5 218

2.1 148

2.4 310

3.6 252

7.1 299

2.1 234

3.6 303

3.8 305

4.8 409

5.7 567

3.5 267

2.9 269

6.5 416

2.4 187

1.5 84

1.7 144

1.5 93

1.5 121

3.6 300

3.6 274

3.5 313

2.4 199

3.7 281

3.7 306

1.6 138

2.1 138

1.9 149

5.3 429

2.1 207

3.7 298

3.8 342

1.9 280

1.9 214

2.8 303

1.6 98

1.9 152

2.4 163

2.5 174

2.4 257

1.9 163

1.3 92

2.6 160

3.9 233

2.4 184

1.5 107

6.3 495

2.5 167

2.1 203

1.9 139

1.9 114

3.5 279

​(a) A manufacturer offers

2.72.7

and

3.33.3

liter engines in a particular model car. Based on these​ data, how much more horsepower should one expect the larger engine to​ produce? Give your answer as a​ 95% confidence interval.

left bracket nothing to nothing right bracketenter your response here to enter your response here

​(Round to the nearest integer as​ needed.)

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Linear Regression
Confidence Intervals

Formulas

Simple Linear Regression: y = β0 + β1 * x
Slope Formula: β1 = (n * Σxy - Σx * Σy) / (n * Σx² - (Σx)²)
Confidence Interval for Prediction: CI = y1 - y2 ± t(0.025) * SE(y1 - y2)

Theorems

Simple Linear Regression Model
t-distribution for Confidence Intervals

Suitable Grade Level

Grades 10-12