Math Problem Statement

g(x)=1/(2+x)^3 express the following function as a power series (centered at x=0)

Solution

To express the function g(x)=1(2+x)3g(x) = \frac{1}{(2+x)^3} as a power series centered at x=0x = 0, we can use the binomial series expansion.

Step 1: Rewrite the function in a form suitable for binomial expansion

We want to manipulate the function into the form (1+u)n(1 + u)^n, since the binomial series expansion works for that form.

Start with:

g(x)=1(2+x)3g(x) = \frac{1}{(2 + x)^3}

Factor out the 2 from the denominator:

g(x)=123(1+x2)3=181(1+x2)3g(x) = \frac{1}{2^3 \left( 1 + \frac{x}{2} \right)^3} = \frac{1}{8} \cdot \frac{1}{\left( 1 + \frac{x}{2} \right)^3}

Step 2: Apply the binomial series

The binomial series for (1+u)n(1 + u)^n is given by:

(1+u)n=1+nu+n(n1)2!u2+n(n1)(n2)3!u3+(1 + u)^n = 1 + n u + \frac{n(n-1)}{2!} u^2 + \frac{n(n-1)(n-2)}{3!} u^3 + \dots

In our case, u=x2u = \frac{x}{2} and n=3n = -3, so:

(1+x2)3=1+(3)x2+3(31)2!(x2)2+3(31)(32)3!(x2)3+\left( 1 + \frac{x}{2} \right)^{-3} = 1 + (-3) \cdot \frac{x}{2} + \frac{-3(-3-1)}{2!} \cdot \left( \frac{x}{2} \right)^2 + \frac{-3(-3-1)(-3-2)}{3!} \cdot \left( \frac{x}{2} \right)^3 + \dots

Step 3: Compute the first few terms

Now, calculate each term:

  1. First term: 11
  2. Second term: 3x2=3x2-3 \cdot \frac{x}{2} = -\frac{3x}{2}
  3. Third term: 3(4)2!(x2)2=122x24=3x24\frac{-3(-4)}{2!} \cdot \left( \frac{x}{2} \right)^2 = \frac{12}{2} \cdot \frac{x^2}{4} = \frac{3x^2}{4}
  4. Fourth term: 3(4)(5)3!(x2)3=606x38=5x38\frac{-3(-4)(-5)}{3!} \cdot \left( \frac{x}{2} \right)^3 = \frac{-60}{6} \cdot \frac{x^3}{8} = -\frac{5x^3}{8}

Step 4: Combine the results

So, the power series expansion for (1+x2)3\left( 1 + \frac{x}{2} \right)^{-3} is:

(1+x2)3=13x2+3x245x38+\left( 1 + \frac{x}{2} \right)^{-3} = 1 - \frac{3x}{2} + \frac{3x^2}{4} - \frac{5x^3}{8} + \dots

Finally, multiply by the factor 18\frac{1}{8} to get the full expansion for g(x)g(x):

g(x)=18(13x2+3x245x38+)g(x) = \frac{1}{8} \left( 1 - \frac{3x}{2} + \frac{3x^2}{4} - \frac{5x^3}{8} + \dots \right)

So the power series expansion for g(x)g(x) is:

g(x)=183x16+3x2325x364+g(x) = \frac{1}{8} - \frac{3x}{16} + \frac{3x^2}{32} - \frac{5x^3}{64} + \dots

Summary:

g(x)=183x16+3x2325x364+g(x) = \frac{1}{8} - \frac{3x}{16} + \frac{3x^2}{32} - \frac{5x^3}{64} + \dots


Would you like further details or clarification on any part of the process?

Here are some related questions:

  1. How do we derive a binomial series for negative exponents?
  2. What happens if we try to expand a function with a different form, such as 1(1+x)3\frac{1}{(1+x)^3}?
  3. How can we check the radius of convergence for a power series?
  4. How do we obtain the nth term of a binomial series?
  5. Can this method be applied to other functions, such as 1(a+bx)3\frac{1}{(a + bx)^3}?

Tip: For binomial expansions, you can always expand (1+u)n(1 + u)^n around 0 as long as u<1|u| < 1 to ensure convergence.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Power Series
Binomial Series Expansion
Negative Exponents

Formulas

Binomial Series: (1 + u)^n = 1 + n*u + n(n-1)/2! * u^2 + ...
Factorization: (2+x)^3 = 2^3 * (1 + x/2)^3

Theorems

Binomial Theorem for Real Exponents

Suitable Grade Level

Undergraduate Mathematics or Advanced High School (Grades 11-12)