Math Problem Statement

what is the potential function of (6xy-e^(2y)cosx)vec(i) + 2(x^3+e^(2y)sinx)vec(j), please give the answer

Solution

To determine the potential function ϕ(x,y)\phi(x,y) of the given vector field:

F=(6xye2ycosx)i+2(x3+e2ysinx)j,\mathbf{F} = (6xy - e^{2y}\cos x)\mathbf{i} + 2(x^3 + e^{2y}\sin x)\mathbf{j}, we note that a potential function ϕ(x,y)\phi(x,y) satisfies:

ϕx=F1andϕy=F2,\frac{\partial \phi}{\partial x} = F_1 \quad \text{and} \quad \frac{\partial \phi}{\partial y} = F_2, where F1F_1 and F2F_2 are the components of the vector field.


Step 1: Integrate F1F_1 with respect to xx

Given F1=6xye2ycosxF_1 = 6xy - e^{2y}\cos x, we integrate with respect to xx (treating yy as constant):

ϕ(x,y)=(6xye2ycosx)dx.\phi(x,y) = \int (6xy - e^{2y}\cos x) \, dx.

  • For 6xy6xy, the integral is 3x2y3x^2y (since xdx=x22\int x \, dx = \frac{x^2}{2}).
  • For e2ycosx-e^{2y}\cos x, the integral is e2ysinx-e^{2y}\sin x (since cosxdx=sinx\int \cos x \, dx = \sin x).

Thus:

ϕ(x,y)=3x2ye2ysinx+h(y),\phi(x,y) = 3x^2y - e^{2y}\sin x + h(y), where h(y)h(y) is an arbitrary function of yy (since the partial derivative with respect to xx eliminates any purely yy-dependent terms).


Step 2: Differentiate ϕ\phi with respect to yy

To determine h(y)h(y), differentiate ϕ(x,y)\phi(x,y) with respect to yy:

ϕy=y(3x2ye2ysinx+h(y)).\frac{\partial \phi}{\partial y} = \frac{\partial}{\partial y} \left( 3x^2y - e^{2y}\sin x + h(y) \right).

This gives:

ϕy=3x22e2ysinx+h(y).\frac{\partial \phi}{\partial y} = 3x^2 - 2e^{2y}\sin x + h'(y).


Step 3: Equate ϕy\frac{\partial \phi}{\partial y} to F2F_2

From the given vector field, F2=2(x3+e2ysinx)F_2 = 2(x^3 + e^{2y}\sin x). Equating this to ϕy\frac{\partial \phi}{\partial y}:

3x22e2ysinx+h(y)=2x3+2e2ysinx.3x^2 - 2e^{2y}\sin x + h'(y) = 2x^3 + 2e^{2y}\sin x.

Simplify the equation:

[ h'(y) = 2x^3 + x

is

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Gradient Fields
Potential Functions

Formulas

∇φ(x, y) = F(x, y)
∂φ/∂x = F₁
∂φ/∂y = F₂

Theorems

Fundamental Theorem for Gradient Fields

Suitable Grade Level

College Level (Calculus III or Multivariable Calculus)