Math Problem Statement

Let N(t) be a Poisson process with parameter λ. So e.g. N(t) is Poisson with parameter λt. Now define the new process X(t) = N(t) − λt. Find E(X(t)) and also E(X(t) | X(s) = x) where s < t.

Solution

To solve the problem, let’s analyze each part:

Problem Summary:

  1. N(t)N(t) is a Poisson process with rate parameter λ\lambda, meaning N(t)Poisson(λt)N(t) \sim \text{Poisson}(\lambda t).
  2. X(t)=N(t)λtX(t) = N(t) - \lambda t defines a new process.

We are tasked to compute:

  • E[X(t)]\mathbb{E}[X(t)],
  • E[X(t)X(s)=x]\mathbb{E}[X(t) | X(s) = x] for s<ts < t.

Step 1: Find E[X(t)]\mathbb{E}[X(t)]

From the definition of X(t)X(t): X(t)=N(t)λt.X(t) = N(t) - \lambda t.

The expectation of N(t)N(t) is: E[N(t)]=λt.\mathbb{E}[N(t)] = \lambda t.

Using linearity of expectation: [ \mathbb{E}[X(t)] = \mathbb{E}[N(t)] - \lambda t = \lambda t - \lambda t = 0. ]

Thus: E[X(t)]=0.\mathbb{E}[X(t)] = 0.


Step 2: Find E[X(t)X(s)=x]\mathbb{E}[X(t) | X(s) = x], s<ts < t

Key Property:

The increments of a Poisson process are independent. For s<ts < t, the process N(t)N(s)N(t) - N(s) follows a Poisson distribution with parameter λ(ts)\lambda (t - s).

Rewrite X(t)X(t) and X(s)X(s):

X(s)=N(s)λs,X(s) = N(s) - \lambda s, X(t)=N(t)λt.X(t) = N(t) - \lambda t.

Conditional on X(s)=xX(s) = x, we can express N(s)N(s) as: N(s)=x+λs.N(s) = x + \lambda s.

For t>st > s, the increment N(t)N(s)N(t) - N(s) is independent of N(s)N(s) and has distribution: N(t)N(s)Poisson(λ(ts)).N(t) - N(s) \sim \text{Poisson}(\lambda (t - s)).

Thus: N(t)=N(s)+(N(t)N(s)).N(t) = N(s) + (N(t) - N(s)).

Substitute N(t)N(t) into X(t)X(t): X(t)=N(t)λt=(N(s)+(N(t)N(s)))λt.X(t) = N(t) - \lambda t = \big(N(s) + (N(t) - N(s))\big) - \lambda t.

Using N(s)=x+λsN(s) = x + \lambda s: X(t)=((x+λs)+(N(t)N(s)))λt.X(t) = \big((x + \lambda s) + (N(t) - N(s))\big) - \lambda t.

Simplify: X(t)=x+(N(t)N(s))λ(ts).X(t) = x + (N(t) - N(s)) - \lambda (t - s).

Conditional Expectation:

Given X(s)=xX(s) = x, the term N(t)N(s)N(t) - N(s) has expectation: E[N(t)N(s)X(s)=x]=λ(ts).\mathbb{E}[N(t) - N(s) | X(s) = x] = \lambda (t - s).

Substitute this into X(t)X(t): [ \mathbb{E}[X(t) | X(s) = x] = x + \mathbb{E}[N(t) - N(s) | X(s) = x] - \lambda (t - s). ]

E[X(t)X(s)=x]=x+λ(ts)λ(ts).\mathbb{E}[X(t) | X(s) = x] = x + \lambda (t - s) - \lambda (t - s).

Simplify: E[X(t)X(s)=x]=x.\mathbb{E}[X(t) | X(s) = x] = x.


Final Results:

  1. E[X(t)]=0\mathbb{E}[X(t)] = 0,
  2. E[X(t)X(s)=x]=x\mathbb{E}[X(t) | X(s) = x] = x.

Would you like further clarification or additional examples?

Related Questions:

  1. What is the variance of X(t)X(t)?
  2. How does X(t)X(t) behave as tt \to \infty?
  3. What is the distribution of X(t)X(t)?
  4. Can we generalize the result for E[X(t)N(s)=n]\mathbb{E}[X(t) | N(s) = n]?
  5. What happens if λ\lambda is time-dependent?

Tip:

Always use the independence property of Poisson increments when working with conditional expectations in Poisson processes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Poisson process
Conditional expectation
Independence of increments

Formulas

E[N(t)] = λt
X(t) = N(t) - λt
E[X(t)] = E[N(t)] - λt
E[X(t) | X(s) = x] = x

Theorems

Independence of Poisson process increments
Linearity of expectation

Suitable Grade Level

Graduate Level (Advanced Probability)