Math Problem Statement
<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow data-cke-white-space-first="1" data-cke-white-space-last="1"> <mi mathvariant="italic">f</mi> <mi mathvariant="normal">(</mi> <mi mathvariant="italic">x</mi> <mi mathvariant="normal">)=</mi> <mo>{</mo> <mfenced close="" open="" separators=","> <mrow> <mtable columnalign="center" groupalign="{left}" rowalign="baseline" rowspacing="1.0ex"> <mtr> <mtd> <mrow><mi>x</mi><mo>+</mo> <mn>1</mn> <mspace width="10pt"></mspace> </mrow> </mtd> <mtd> <mrow> <mtext>if </mtext> <mi mathvariant="italic">x</mi> <mo><</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>x</mi><mo>-</mo> <mn>1</mn> <mspace width="10pt"></mspace> </mrow> </mtd> <mtd> <mrow> <mtext>if </mtext> <mi mathvariant="italic">x</mi> <mo>></mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mrow> </mfenced> </mrow></math>
Solution
The given function is a piecewise function, meaning that it takes different expressions depending on the value of .
Here’s the breakdown of the function:
\begin{cases} x + 1 & \text{if } x < 0 \\ x - 1 & \text{if } x > 0 \end{cases}$$ ### Analysis: - **For $$x < 0$$:** The function is $$f(x) = x + 1$$. This means you add 1 to $$x$$. - **For $$x > 0$$:** The function is $$f(x) = x - 1$$. This means you subtract 1 from $$x$$. Note: There is no explicit definition of $$f(x)$$ at $$x = 0$$, so the function is undefined at that point. Would you like to explore specific values of $$f(x)$$, graph the function, or delve into another related topic? ### 5 Related Questions: 1. What happens to the value of $$f(x)$$ as $$x$$ approaches zero from the left and right? 2. How can we extend $$f(x)$$ to include $$x = 0$$? 3. What is the derivative of $$f(x)$$ for $$x > 0$$ and $$x < 0$$? 4. Can this function be represented as a continuous function by modifying it at $$x = 0$$? 5. What does the graph of $$f(x)$$ look like? ### Tip: Piecewise functions can often be extended to make them continuous at points where they are undefined.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Piecewise Functions
Basic Algebra
Formulas
f(x) = { x + 1 if x < 0, x - 1 if x > 0 }
Theorems
Definition of Piecewise Functions
Suitable Grade Level
Grades 9-12
Related Recommendation
Evaluate a Piecewise Function at f(0) for a Given Set of Intervals
Piecewise Function f(x): 2x + 1 for x < 0 and 2x + 2 for x ≥ 0
Graphing a Piecewise Function: f(x) = 1, -x - 1, and 0
Understanding Piecewise Functions: Clarifying the Function f(x) = {-1 for -4 < x < 1, x + 2 for x < -5}
Piecewise Function f(x) = 1/2x + 2 and f(x) = -x - 3