Math Problem Statement

Into partial fractions

Decompose the expression (16 + 5x - 2x^2) / ((x + 1)^2 (x + 4)) into partial fractions.

Solution

To decompose the given expression into partial fractions, we start with the following rational function:

16+5x2x2(x+1)2(x+4)\frac{16 + 5x - 2x^2}{(x+1)^2 (x+4)}

Step 1: Set up the form for partial fractions

Since the denominator has the factors (x+1)2(x+1)^2 and (x+4)(x+4), the corresponding partial fraction decomposition will be:

16+5x2x2(x+1)2(x+4)=Ax+1+B(x+1)2+Cx+4\frac{16 + 5x - 2x^2}{(x+1)^2 (x+4)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x+4}

where AA, BB, and CC are constants to be determined.

Step 2: Combine the fractions on the right-hand side

To combine these fractions over a common denominator (x+1)2(x+4)(x+1)^2 (x+4), we have:

Ax+1=A(x+1)(x+4)(x+1)2(x+4)\frac{A}{x+1} = \frac{A(x+1)(x+4)}{(x+1)^2(x+4)} B(x+1)2=B(x+4)(x+1)2(x+4)\frac{B}{(x+1)^2} = \frac{B(x+4)}{(x+1)^2(x+4)} Cx+4=C(x+1)2(x+1)2(x+4)\frac{C}{x+4} = \frac{C(x+1)^2}{(x+1)^2(x+4)}

Now, summing these terms, we get:

A(x+4)+B(x+4)+C(x+1)2(x+1)2(x+4)\frac{A(x+4) + B(x+4) + C(x+1)^2}{(x+1)^2(x+4)}

Step 3: Set up the equation

The numerator of the original fraction 16+5x2x216 + 5x - 2x^2 must equal the numerator of the combined partial fractions:

16+5x2x2=A(x+4)+B(x+4)+C(x+1)216 + 5x - 2x^2 = A(x+4) + B(x+4) + C(x+1)^2

Expand both sides to find AA, BB, and CC.

Left-hand side:

16+5x2x216 + 5x - 2x^2

Right-hand side:

Expanding the right-hand side: A(x+4)+B(x+4)+C(x+1)2=A(x+4)+B(x+4)+C(x2+2x+1)A(x+4) + B(x+4) + C(x+1)^2 = A(x+4) + B(x+4) + C(x^2 + 2x + 1) =(A+B)x+(4A+4B)+C(x2+2x+1)= (A+B)x + (4A + 4B) + C(x^2 + 2x + 1) =Cx2+(A+B+2C)x+(4A+4B+C)= Cx^2 + (A + B + 2C)x + (4A + 4B + C)

Step 4: Equate coefficients

Now, compare coefficients of powers of xx on both sides:

  • Coefficient of x2x^2: 2=C-2 = C, so C=2C = -2
  • Coefficient of xx: 5=A+B+2C=A+B+2(2)=A+B45 = A + B + 2C = A + B + 2(-2) = A + B - 4, so A+B=9A + B = 9
  • Constant term: 16=4A+4B+C=4A+4B216 = 4A + 4B + C = 4A + 4B - 2, so 4A+4B=184A + 4B = 18, or A+B=92A + B = \frac{9}{2}

Step 5: Solve the system of equations

We now solve for AA and (B:

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Fraction Decomposition
Rational Functions
Algebraic Fractions

Formulas

Partial Fraction Decomposition for Rational Functions
Combining fractions over a common denominator

Theorems

Partial Fractions Decomposition

Suitable Grade Level

Grades 10-12