Math Problem Statement

Sean {x = 2 - t, y = 1 + 4t, t ∈ R}, las ecuaciones paramétricas de una recta r. a) ¿Los puntos P(1,5) y Q(3,-2) pertenecen a r? b) ¿Para qué valor del parámetro t se obtiene el punto (-2,17)? c) ¿Para qué valores de t se obtienen los puntos del segmento determinado por las intersecciones de la recta con los ejes coordenados? d) Calcule el área del triángulo que forma la recta con los ejes coordenados. e) Escriba otras ecuaciones paramétricas de la misma recta.

Solution

The problem provides parametric equations for a line rr in the form:

x = 2 - t \\ y = 1 + 4t \\ t \in \mathbb{R} \end{cases}$$ Let's break down and address each question: ### a) Do the points $$P(1, 5)$$ and $$Q(3, -2)$$ belong to $$r$$? To check if these points belong to the line, we need to find whether there exists a value of $$t$$ such that the parametric equations yield these points. 1. **Point $$P(1, 5)$$:** - From the equation $$x = 2 - t$$, set $$x = 1$$: $$1 = 2 - t \quad \Rightarrow \quad t = 1.$$ - Check if $$y = 5$$ holds when $$t = 1$$: $$y = 1 + 4(1) = 5.$$ So, $$P(1, 5)$$ belongs to the line $$r$$. 2. **Point $$Q(3, -2)$$:** - From the equation $$x = 2 - t$$, set $$x = 3$$: $$3 = 2 - t \quad \Rightarrow \quad t = -1.$$ - Check if $$y = -2$$ holds when $$t = -1$$: $$y = 1 + 4(-1) = 1 - 4 = -3.$$ Since $$y \neq -2$$, the point $$Q(3, -2)$$ does **not** belong to the line $$r$$. ### b) For what value of $$t$$ is the point $$(-2, 17)$$ on the line? We solve for

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Parametric Equations
Coordinate Geometry
Intersection with Axes
Area of Triangle

Formulas

x = 2 - t, y = 1 + 4t
Intersection with x-axis: y = 0
Intersection with y-axis: x = 0
Area of triangle = 1/2 * base * height

Theorems

Equations of a Line
Intersection Theorems for Coordinate Axes

Suitable Grade Level

Grades 10-12