Math Problem Statement

ABCD is a parallelogram. AB = 3√2, AD = 8, ∠BAD = 45◦, M is a point on CD, CM : MD = 1 : 2. N is a point on AD, AN : ND = 3 : 1. Find: a) the length of AM; b) the length of BN; c) the acute angle between AM and BN.

Solution

We are given a parallelogram ABCDABCD, where:

  • AB=32AB = 3\sqrt{2}
  • AD=8AD = 8
  • BAD=45\angle BAD = 45^\circ
  • MM is a point on CDCD such that CM:MD=1:2CM:MD = 1:2
  • NN is a point on ADAD such that AN:ND=3:1AN:ND = 3:1

We need to find:

a) The length of AMAM
b) The length of BNBN
c) The acute angle between AMAM and BNBN

Step 1: Set up a coordinate system

Let’s place point AA at the origin (0,0)(0, 0), point BB along the xx-axis, and point DD along the yy-axis. From the given information:

  • A(0,0)A(0, 0)
  • B(32,0)B(3\sqrt{2}, 0)
  • D(0,8)D(0, 8)

Using the property of a parallelogram, CC, the opposite vertex of AA, can be found by adding the vectors AD\overrightarrow{AD} and AB\overrightarrow{AB}:

C=B+D=(32,8)C = B + D = (3\sqrt{2}, 8)

Step 2: Find coordinates of points M and N

  • For point MM on CDCD:
    The ratio CM:MD=1:2CM:MD = 1:2 implies that MM divides the line segment CDCD in the ratio 1:2. Using the section formula, the coordinates of MM are:

    M=(2(0)+1(32)3,2(8)+1(0)3)=(323,163)=(2,163)M = \left( \frac{2(0) + 1(3\sqrt{2})}{3}, \frac{2(8) + 1(0)}{3} \right) = \left( \frac{3\sqrt{2}}{3}, \frac{16}{3} \right) = \left( \sqrt{2}, \frac{16}{3} \right)

  • For point NN on ADAD:
    The ratio AN:ND=3:1AN:ND = 3:1 implies that NN divides the line segment ADAD in the ratio 3:1. Using the section formula, the coordinates of NN are:

    N=(1(0)+3(0)4,1(8)+3(0)4)=(0,2)N = \left( \frac{1(0) + 3(0)}{4}, \frac{1(8) + 3(0)}{4} \right) = (0, 2)

Step 3: Calculate the length of AMAM

The length of AMAM can be calculated using the distance formula:

AM=(xMxA)2+(yMyA)2=(20)2+(1630)2AM = \sqrt{(x_M - x_A)^2 + (y_M - y_A)^2} = \sqrt{(\sqrt{2} - 0)^2 + \left( \frac{16}{3} - 0 \right)^2}

AM=2+(163)2=2+2569=189+2569=2749=2743AM = \sqrt{2 + \left( \frac{16}{3} \right)^2} = \sqrt{2 + \frac{256}{9}} = \sqrt{\frac{18}{9} + \frac{256}{9}} = \sqrt{\frac{274}{9}} = \frac{\sqrt{274}}{3}

Step 4: Calculate the length of BNBN

The length of BNBN can be calculated using the distance formula:

BN=(xBxN)2+(yByN)2=(320)2+(02)2BN = \sqrt{(x_B - x_N)^2 + (y_B - y_N)^2} = \sqrt{(3\sqrt{2} - 0)^2 + (0 - 2)^2}

BN=(32)2+(2)2=18+4=22BN = \sqrt{(3\sqrt{2})^2 + (-2)^2} = \sqrt{18 + 4} = \sqrt{22}

Step 5: Calculate the acute angle between AMAM and BNBN

To find the acute angle θ\theta between AMAM and BNBN, we use the formula for the dot product:

cosθ=AMBNAMBN\cos \theta = \frac{\vec{AM} \cdot \vec{BN}}{|\vec{AM}| |\vec{BN}|}

First, compute the vectors AM\vec{AM} and BN\vec{BN}:

  • AM=(20,1630)=(2,163)\vec{AM} = (\sqrt{2} - 0, \frac{16}{3} - 0) = (\sqrt{2}, \frac{16}{3})
  • BN=(032,20)=(32,2)\vec{BN} = (0 - 3\sqrt{2}, 2 - 0) = (-3\sqrt{2}, 2)

The dot product AMBN\vec{AM} \cdot \vec{BN} is:

[ \vec{AM} \cdot \vec{BN} = (\sqrt{2})(-3\sqrt{2}) + \left(\frac{16}{3}\right)(2) = -6 + \frac{32}{3} = \frac{-18

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Vectors
Distance Formula
Dot Product

Formulas

Distance formula: d = √((x2 - x1)² + (y2 - y1)²)
Section formula: P(x, y) = ((m*x2 + n*x1) / (m + n), (m*y2 + n*y1) / (m + n))
Dot product: A·B = |A| |B| cos(θ)

Theorems

Properties of parallelograms
Angle between two vectors

Suitable Grade Level

Grades 10-12