Math Problem Statement
- A rectangular page is to contain 24 square inches of print. The margins at the top and the bottom of the page are 1.5 inches, and the margins on the left and the right are 1 inch (see figures). What should be the measure of the page for the least amount of paper?
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Optimization
Algebra
Derivatives
Geometry
Formulas
Area of rectangle = width * height
Printed area constraint: x * y = 24
Total area of the page: A = (x + 2)(y + 3)
Derivative of area A: dA/dx = 3 - 48/x^2
Theorems
Optimization using derivatives
Critical points in calculus
Suitable Grade Level
Grades 11-12, Calculus
Related Recommendation
Optimization Problem: Minimizing Paper Usage for a Rectangular Page
Minimizing Page Area for a Printed Rectangle with Margins
Minimizing Paper Use for a Rectangular Page with 23 Square Inches of Print
Optimization Problem: Minimizing the Dimensions of a Rectangular Page with Margins
Optimization of a Box with Square Base and Open Top - Minimum Surface Area Problem