Math Problem Statement
En funktion f er bestemt ved 2 fx x () 4 =- + . Grafen for f og koordinatsystemets akser afgrænser i første kvadrant en punktmængde M, der har et areal. a) Bestem arealet af M. Når 0 2 < <a , skærer tangenten til grafen for f i punktet ( , ( )) Pa f a koordinatsystemets akser i punkterne Q og R (se figuren). Det oplyses, at arealet af trekant OQR er en funktion af a, som er givet ved 2 2 ( 4) ( ) , 0 2. 4 a Ta a a + = << b) Bestem den værdi af a, der gør arealet af trekant OQR mindst muligt. c) Bestem koordinatsættet til hvert af punkterne Q og R udtrykt ved a, og gør rede for, at arealet af trekant OQR som funktion af a er givet ved ( ).
Solution
Let's break down the problem into the steps needed to solve it:
Part a: Determine the Area of M
- The function is given by . To find the area enclosed by the graph of and the coordinate axes in the first quadrant:
- Identify the intercepts:
- -intercept: Set :
- -intercept: Set :
- The intercepts are at points and .
- The area in the first quadrant forms a right triangle with these intercepts:
- Identify the intercepts:
Part b: Find the Value of Minimizing the Area of Triangle OQR
- Given the function for :
- To find the minimum, take the derivative of with respect to and set it to zero:
- Find , solve the resulting equation, and determine the critical points.
- Verify which critical point gives the minimum value using the second derivative test or evaluating values.
Part c: Find Coordinates of Q and R and Confirm
- The slope of the tangent at any point on the curve is given by the derivative .
- The equation of the tangent line at point : Simplifying:
- Set this line equal to zero to find intersections with the axes:
- -axis ():
- -axis ():
- Points and are and .
Conclusion for Part c
- This confirms that the area formula is valid and consistent with the intersections.
Would you like a detailed derivation of the minimum for part b or the tangent line equation? Here are some related questions to extend this topic:
- How do you derive the formula for the area of triangle OQR given ?
- What is the significance of the critical point found in part b in terms of the behavior of ?
- Can you verify the minimum value of by plugging different values of into the equation?
- How does the geometric interpretation of tangents help in understanding the minimum area problem?
- How would the area change if the function had a different slope?
Tip: When solving optimization problems, always ensure to verify if the critical points found are indeed minimum or maximum using the second derivative test or a number line analysis.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear functions
Optimization
Geometry of triangles
Derivatives
Formulas
f(x) = -2x + 4
Area of a triangle: A = 1/2 * base * height
T(a) = (a^2 + 4)^2 / 4a
Theorems
Derivative rules for optimization
Critical points for minimization
Suitable Grade Level
Grade 12 or university-level calculus
Related Recommendation
Optimization Problem: Minimum Area for Triangle and Square with Perimeter Sum of 9
Optimizing Triangle Area in Coordinate Geometry: Explained
Maximize Area of a Triangle with a Tangent to f(x) = (x + 7)^{-2}
Equation of a Line Minimizing Area in the First Quadrant
Maximizing the Area of a Shaded Region Using Linear Equations