Math Problem Statement

SOAL LATIHAN TENTANG OPTIMALISASI TR: Suatu perusahaan yang memproduksi dua jenis barang A dan B masing-masing sebanyak x1 unit dan x2 unit, menjual barangnya seharga P1 dan P2. Bila harga tersebut dinyatakan dalam bentuk fungsi berikut ini: Barang A: 2x1 + 2x2 = 22 – 2P1 Barang B: x1 + 2x2 = –P2 + 17 maka hitunglah besarnya penerimaan total maksimum dan harga (dalam satuan $) yang terjadi saat itu carilah diketahui, ditanya dan cara penyelesaiannya

SOAL LATIHAN TENTANG OPTIMALISASI TR: Suatu perusahaan yang memproduksi dua jenis barang A dan B masing-masing sebanyak x1 unit dan x2 unit, menjual barangnya seharga P1 dan P2. Bila harga tersebut dinyatakan dalam bentuk fungsi berikut ini: Barang A: 2x1 + 2x2 = 22 – 2P1 Barang B: x1 + 2x2 = –P2 + 17 maka hitunglah besarnya penerimaan total maksimum dan harga (dalam satuan $) yang terjadi saat itu carilah diketahui, ditanya dan cara penyelesaiannya

Solution

Let's analyze and solve the problem step-by-step:

Given:

The company produces two types of goods, A and B, and sells each at prices P1P_1 and P2P_2, with the following demand functions:

  1. For Product A: 2x1+2x2=222P12x_1 + 2x_2 = 22 - 2P_1

  2. For Product B: x1+2x2=P2+17x_1 + 2x_2 = -P_2 + 17

Objectives:

  1. Determine the total revenue maximization condition.
  2. Calculate the maximum total revenue.
  3. Find the prices P1P_1 and P2P_2 at the point of maximum revenue.

Solution Approach:

  1. Identify variables:

    • x1x_1: Quantity of Product A
    • x2x_2: Quantity of Product B
    • P1P_1: Price of Product A
    • P2P_2: Price of Product B
    • Total Revenue TR=P1x1+P2x2TR = P_1 \cdot x_1 + P_2 \cdot x_2
  2. Express P1P_1 and P2P_2 in terms of x1x_1 and x2x_2 by rearranging the given equations:

    For Product A: P1=11x1x2P_1 = 11 - x_1 - x_2

    For Product B: P2=17x12x2P_2 = 17 - x_1 - 2x_2

  3. Formulate the Total Revenue (TR): Substitute P1P_1 and P2P_2 into the revenue function: TR=(11x1x2)x1+(17x12x2)x2TR = (11 - x_1 - x_2) \cdot x_1 + (17 - x_1 - 2x_2) \cdot x_2 Expand and simplify this expression to form TRTR in terms of x1x_1 and x2x_2.

  4. Maximize TR: To find the maximum TR, take partial derivatives of TRTR with respect to x1x_1 and x2x_2, set them to zero, and solve the system of equations for x1x_1 and x2x_2.

  5. Calculate prices: Substitute the values of x1x_1 and x2x_2 back into the equations for P1P_1 and P2P_2 to find the prices at the maximum revenue.

  6. Evaluate Maximum Revenue: Plug the values of x1x_1, x2x_2, P1P_1, and P2P_2 into the TR expression to find the maximum revenue.

Would you like a detailed solution for each step, or have any questions?

Here are five follow-up questions for deeper understanding:

  1. How do the derivatives relate to finding the maximum point for total revenue?
  2. What is the significance of setting marginal revenues to zero?
  3. Why do we substitute P1P_1 and P2P_2 in terms of x1x_1 and x2x_2 before calculating total revenue?
  4. How would changes in the demand functions impact the total revenue maximization?
  5. How do elasticity of demand and prices affect the revenue optimization?

Tip: When solving for maximum or minimum values in functions with multiple variables, using partial derivatives and setting them to zero can help identify critical points where extreme values might occur.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Optimization
Revenue Maximization
Algebra
Partial Derivatives

Formulas

Demand functions: 2x1 + 2x2 = 22 - 2P1 and x1 + 2x2 = -P2 + 17
Total Revenue (TR) = P1 * x1 + P2 * x2
Marginal Revenue (MR) calculated via partial derivatives of TR

Theorems

First Order Condition (FOC) for optimization

Suitable Grade Level

Undergraduate Economics/Mathematics