Math Problem Statement

“Derivation and Optimization of Pivot Selection i. Assume the pivot is at position p (fraction of the array length n, p = k * n, where k ∈ (0,1)). ii. Derive the total number of comparisons C(n, k) as a continuous function of k. iii. Use calculus to determine the value of k that minimizes C(n, k). iv. Verify your result using the second derivative test.” i don’t know two cents about what’s being discussed here. But I’m good at calculus. Just give me the function & how to easily derive it. I’ll find out how to find minimum value of C and apply the second derivative test.

Solution

Here’s a structured explanation of the problem and the function you need to work with:


1. Problem Context (Abstract Understanding)

The problem involves optimizing a pivot selection strategy in sorting algorithms like quicksort. The goal is to minimize the number of comparisons C(n,k)C(n, k), where kk determines the position of the pivot as a fraction of the array size nn (e.g., p=knp = k \cdot n).


2. Function Definition C(n,k)C(n, k)

For quicksort, the total number of comparisons depends on two parts:

  1. Comparisons to partition the array at the pivot knk \cdot n.
  2. Recursive comparisons for the sub-arrays on either side of the pivot.

The continuous approximation for C(n,k)C(n, k) is given by:

C(n,k)=n+kC(kn,k)+(1k)C((1k)n,k)C(n, k) = n + k \cdot C(k \cdot n, k) + (1 - k) \cdot C((1 - k) \cdot n, k)

For simplicity, assume that C(x,k)=xlnxC(x, k) = x \ln x (an approximation for the number of comparisons in sorting xx elements). Then, substituting C(x,k)=xlnxC(x, k) = x \ln x into the recursion gives:

C(n,k)=n+k(knln(kn))+(1k)((1k)nln((1k)n))C(n, k) = n + k \cdot (k \cdot n \ln (k \cdot n)) + (1 - k) \cdot ((1 - k) \cdot n \ln ((1 - k) \cdot n))

Simplify:

C(n,k)=n+k2nln(k)+k2nln(n)+(1k)2nln(1k)+(1k)2nln(n)C(n, k) = n + k^2 n \ln(k) + k^2 n \ln(n) + (1 - k)^2 n \ln(1 - k) + (1 - k)^2 n \ln(n)

Combine terms:

C(n,k)=n+nln(n)(k2+(1k)2)+n[k2ln(k)+(1k)2ln(1k)]C(n, k) = n + n \ln(n) \cdot (k^2 + (1 - k)^2) + n \left[ k^2 \ln(k) + (1 - k)^2 \ln(1 - k) \right]

Further simplification yields:

C(n,k)=n(1+ln(n)(k2+(1k)2)+k2ln(k)+(1k)2ln(1k))C(n, k) = n (1 + \ln(n) (k^2 + (1 - k)^2) + k^2 \ln(k) + (1 - k)^2 \ln(1 - k))


3. What You Need to Do

Focus on minimizing the inner term involving kk:

f(k)=(1+ln(n))(k2+(1k)2)+k2ln(k)+(1k)2ln(1k)f(k) = (1 + \ln(n)) (k^2 + (1 - k)^2) + k^2 \ln(k) + (1 - k)^2 \ln(1 - k)


4. Steps to Minimize f(k)f(k)

  1. Differentiate f(k)f(k) with respect to kk to find f(k)f'(k).
  2. Set f(k)=0f'(k) = 0 to find critical points.
  3. Use the second derivative test f(k)f''(k) to verify whether the critical points correspond to a minimum.

Simplified Version to Work On

You only need to minimize:

g(k)=k2ln(k)+(1k)2ln(1k)g(k) = k^2 \ln(k) + (1 - k)^2 \ln(1 - k)

Derivative of g(k)g(k)

  1. Differentiate g(k)g(k): g(k)=2kln(k)+k2(1k)ln(1k)(1k)g'(k) = 2k \ln(k) + k - 2(1 - k) \ln(1 - k) - (1 - k)
  2. Solve g(k)=0g'(k) = 0 to find kk.
  3. Use the second derivative g(k)g''(k) to verify the result.

Let me know if you need further details on any step!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Optimization
Logarithmic Functions
Recursion

Formulas

C(n, k) = n (1 + ln(n)(k^2 + (1 - k)^2) + k^2 ln(k) + (1 - k)^2 ln(1 - k))
g(k) = k^2 ln(k) + (1 - k)^2 ln(1 - k)

Theorems

Optimization using derivatives
Second derivative test

Suitable Grade Level

Undergraduate (Calculus Level)