Math Problem Statement

Let A \in \mathbb{R}^{n \times n} be a constant matrix and b \in \mathbb{R}^{n} be a constant vector. Let z \in \mathbb{R}^{n}. Consider the function g(z) defined as g(z)=\frac{1}{2}|A z-b|{2}^{2}+\frac{1}{2}|z|{2}^{2} Consider the problem of finding the minimum of g(z) using gradient descent. Derive the optimal step size \alpha_{k} to be used at iteration number k of the gradient descent scheme assuming estimate z_{k-1} from the previous iteration.

Solution

To find the optimal step size αk\alpha_k for the gradient descent scheme to minimize the function g(z)g(z), we start by analyzing the function and its gradient.

Step 1: Define the function and compute the gradient

The function g(z)g(z) is defined as: g(z)=12Azb22+12z22g(z) = \frac{1}{2} \|Az - b\|_2^2 + \frac{1}{2} \|z\|_2^2 Expanding the norm terms, we have: g(z)=12(Azb)(Azb)+12zzg(z) = \frac{1}{2} (Az - b)^\top (Az - b) + \frac{1}{2} z^\top z

Now, let’s compute the gradient of g(z)g(z) with respect to zz: g(z)=(12Azb22+12z22)\nabla g(z) = \nabla \left( \frac{1}{2} \|Az - b\|_2^2 + \frac{1}{2} \|z\|_2^2 \right)

For the first term: (12Azb22)=(12(Azb)(Azb))\nabla \left( \frac{1}{2} \|Az - b\|_2^2 \right) = \nabla \left( \frac{1}{2} (Az - b)^\top (Az - b) \right) Using the chain rule, we have: (12(Azb)(Azb))=A(Azb)\nabla \left( \frac{1}{2} (Az - b)^\top (Az - b) \right) = A^\top (Az - b)

For the second term: (12z22)=(12zz)=z\nabla \left( \frac{1}{2} \|z\|_2^2 \right) = \nabla \left( \frac{1}{2} z^\top z \right) = z

Thus, the gradient of g(z)g(z) is: g(z)=A(Azb)+z\nabla g(z) = A^\top (Az - b) + z

Step 2: Gradient Descent Update Rule

The gradient descent update rule at iteration kk is: zk=zk1αkg(zk1)z_k = z_{k-1} - \alpha_k \nabla g(z_{k-1}) Substituting the gradient: zk=zk1αk(A(Azk1b)+zk1)z_k = z_{k-1} - \alpha_k \left( A^\top (A z_{k-1} - b) + z_{k-1} \right)

Step 3: Find the Optimal Step Size αk\alpha_k

To find the optimal step size αk\alpha_k, we minimize g(z)g(z) along the direction of the negative gradient. Define the univariate function: h(α)=g(zk1αg(zk1))h(\alpha) = g(z_{k-1} - \alpha \nabla g(z_{k-1})) Differentiate h(α)h(\alpha) with respect to α\alpha and set it to zero to find the optimal αk\alpha_k.

Substitute z=zk1αg(zk1)z = z_{k-1} - \alpha \nabla g(z_{k-1}) into g(z)g(z): h(α)=12A(zk1αg(zk1))b22+12zk1αg(zk1)22h(\alpha) = \frac{1}{2} \|A(z_{k-1} - \alpha \nabla g(z_{k-1})) - b\|_2^2 + \frac{1}{2} \|z_{k-1} - \alpha \nabla g(z_{k-1})\|_2^2 Expanding the norm:

+ \frac{1}{2} \left( z_{k-1} - \alpha \nabla g(z_{k-1}) \right)^\top \left( z_{k-1} - \alpha \nabla g(z_{k-1}) \right)$$ Taking the derivative with respect to $$\alpha$$ and setting it to zero: $$\frac{d h(\alpha)}{d \alpha} = -\nabla g(z_{k-1})^\top \left( A^\top (Az_{k-1} - b) + z_{k-1} \right) + \alpha \nabla g(z_{k-1})^\top \left( A^\top A + I \right) \nabla g(z_{k-1}) = 0$$ Thus, the optimal step size $$\alpha_k$$ is: $$\alpha_k = \frac{\nabla g(z_{k-1})^\top \nabla g(z_{k-1})}{\nabla g(z_{k-1})^\top (A^\top A + I) \nabla g(z_{k-1})}$$ This expression provides the optimal step size $$\alpha_k$$ for each iteration in the gradient descent method. Would you like more details on any part of the derivation, or do you have any questions? Here are 5 related questions you might find interesting: 1. How does the convergence rate of gradient descent change with different step sizes? 2. Can the optimal step size $$\alpha_k$$ be constant for all iterations, and under what conditions? 3. How does the matrix $$A$$ affect the optimization problem and the gradient descent convergence? 4. What are the implications of choosing a step size $$\alpha_k$$ that is too large or too small? 5. How would you apply a line search method to determine the step size in a more general setting? **Tip:** When implementing gradient descent, it’s important to monitor the objective function's value at each step to ensure the algorithm is converging as expected.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix algebra
Gradient descent
Norms in vector spaces

Formulas

Gradient of a quadratic function

Theorems

-

Suitable Grade Level

Advanced undergraduate level