Math Problem Statement
A(n) 40,000 kg stunt plane performs a loop-the-loop, flying in a 260-m-diameter vertical circle. At the point where the plane is flying straight down, its speed is 55 m/s and it is accelerating at a rate of 12 m/s squared. What angle does the net force make with the horizontal? Let an angle above horizontal be positive and an angle below horizontal be negative.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Circular Motion
Forces in Physics
Trigonometry
Formulas
Centripetal force: F_c = m * v² / r
Gravitational force: F_g = m * g
Tangential force: F_t = m * a
Angle: θ = tan⁻¹(F_net, vertical / F_net, horizontal)
Theorems
Newton's Second Law of Motion
Centripetal Force in Circular Motion
Suitable Grade Level
Grades 11-12
Related Recommendation
Calculating Net Force on a Stunt Plane Performing a Loop-the-Loop
Centripetal Force and Normal Force in a Vertical Loop for a 40,000 kg Plane
Calculating Net Force Angle in Stunt Plane Loop-the-Loop
Net Force Angle Calculation for a Stunt Plane in Vertical Circular Motion
Calculate Net Force on a 40,000 kg Stunt Plane in Circular Motion