Math Problem Statement

Find all x ∈ Z satisfying each of the following equations. (a) 3x ≡ 2 (mod 7) (b) 5x + 1 ≡ 13 (mod 23) (c) 5x + 1 ≡ 13 (mod 26) (d) 9x ≡ 3 (mod 5) (e) 5x ≡ 1 (mod 6) (f) 3x ≡ 1 (mod 6)

Solution

Let's solve each congruence equation step by step, finding the solutions for xZx \in \mathbb{Z}.

(a) 3x2(mod7)3x \equiv 2 \pmod{7}

We need to solve 3x2(mod7)3x \equiv 2 \pmod{7}. To do this, first, find the inverse of 3 modulo 7.

The inverse of 3 modulo 7 is the number yy such that 3y1(mod7)3y \equiv 1 \pmod{7}. We can check different values of yy to find the inverse:

  • 3×1=3≢1(mod7)3 \times 1 = 3 \not\equiv 1 \pmod{7}
  • 3×2=6≢1(mod7)3 \times 2 = 6 \not\equiv 1 \pmod{7}
  • 3×3=92(mod7)3 \times 3 = 9 \equiv 2 \pmod{7}
  • 3×4=125(mod7)3 \times 4 = 12 \equiv 5 \pmod{7}
  • 3×5=151(mod7)3 \times 5 = 15 \equiv 1 \pmod{7} (Found the inverse!)

So, the inverse of 3 modulo 7 is 5. Multiply both sides of the congruence by 5: 5×3x5×2(mod7)5 \times 3x \equiv 5 \times 2 \pmod{7} x10(mod7)x \equiv 10 \pmod{7} Since 103(mod7)10 \equiv 3 \pmod{7}, the solution is: x3(mod7)x \equiv 3 \pmod{7}

(b) 5x+113(mod23)5x + 1 \equiv 13 \pmod{23}

First, subtract 1 from both sides: 5x12(mod23)5x \equiv 12 \pmod{23} Now, we need to find the inverse of 5 modulo 23. Testing different values of yy:

  • 5×1=55 \times 1 = 5
  • 5×2=105 \times 2 = 10
  • 5×3=155 \times 3 = 15
  • 5×4=205 \times 4 = 20
  • 5×5=252(mod23)5 \times 5 = 25 \equiv 2 \pmod{23}
  • 5×9=4522(mod23)5 \times 9 = 45 \equiv 22 \pmod{23}
  • 5×14=701(mod23)5 \times 14 = 70 \equiv 1 \pmod{23} (Found the inverse!)

So, the inverse of 5 modulo 23 is 14. Multiply both sides by 14: 14×5x14×12(mod23)14 \times 5x \equiv 14 \times 12 \pmod{23} x168(mod23)x \equiv 168 \pmod{23} Since 1687(mod23)168 \equiv 7 \pmod{23}, the solution is: x7(mod23)x \equiv 7 \pmod{23}

(c) 5x+113(mod26)5x + 1 \equiv 13 \pmod{26}

Subtract 1 from both sides: 5x12(mod26)5x \equiv 12 \pmod{26} Since 5 and 26 are not coprime (their gcd is 1), we need to check if this equation has a solution. To see if a solution exists, divide the whole equation by gcd(5,26)=1\gcd(5, 26) = 1: [ x \equiv \frac{12}{1} \pmod{\frac{26}{1}} \implies x \equiv ..

Solution ` look

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Modular Arithmetic
Congruence Equations
Inverse Modulo

Formulas

a * x ≡ b (mod m)
Inverse Modulo: a * y ≡ 1 (mod m)

Theorems

Modular Inverse Theorem
Chinese Remainder Theorem

Suitable Grade Level

Grades 11-12 (Advanced High School Mathematics)