Math Problem Statement

Give me some moderately challenging exponent simplifications with step by answers

Solution

Here are some moderately challenging exponent simplification problems along with step-by-step answers:

Problem 1

Simplify:
(x3y4)2x4y3\frac{(x^3 \cdot y^4)^2}{x^4 \cdot y^3}

Solution:

  1. Start by applying the power rule (am)n=amn(a^m)^n = a^{m \cdot n}: (x3y4)2=x32y42=x6y8(x^3 \cdot y^4)^2 = x^{3 \cdot 2} \cdot y^{4 \cdot 2} = x^6 \cdot y^8

  2. Substitute back into the expression: x6y8x4y3\frac{x^6 \cdot y^8}{x^4 \cdot y^3}

  3. Apply the division rule am/an=amna^m / a^n = a^{m - n}: =x64y83=x2y5= x^{6 - 4} \cdot y^{8 - 3} = x^2 \cdot y^5

Answer:
x2y5x^2 \cdot y^5


Problem 2

Simplify:
(3x2y1)3(x3y4)1(3x^2 y^{-1})^3 \cdot (x^3 y^4)^{-1}

Solution:

  1. Start with the first part (3x2y1)3(3x^2 y^{-1})^3 and apply the power rule: 33x23y13=27x6y33^3 \cdot x^{2 \cdot 3} \cdot y^{-1 \cdot 3} = 27x^6 y^{-3}

  2. Now simplify the second part (x3y4)1(x^3 y^4)^{-1} by applying the power rule: x31y41=x3y4x^{3 \cdot -1} \cdot y^{4 \cdot -1} = x^{-3} y^{-4}

  3. Combine both parts: 27x6y3x3y427x^6 y^{-3} \cdot x^{-3} y^{-4}

  4. Apply the product rule aman=am+na^m \cdot a^n = a^{m + n}: =27x6+(3)y3+(4)=27x3y7= 27x^{6 + (-3)} y^{-3 + (-4)} = 27x^3 y^{-7}

  5. Write the final answer with positive exponents: =27x3y7= \frac{27x^3}{y^7}

Answer:
27x3y7\frac{27x^3}{y^7}


Problem 3

Simplify:
(x2y3)4y5\left(\frac{x^2}{y^{-3}}\right)^4 \cdot y^5

Solution:

  1. Start by applying the power rule to the fraction (x2y3)4\left(\frac{x^2}{y^{-3}}\right)^4: =x24y34=x8y12= \frac{x^{2 \cdot 4}}{y^{-3 \cdot 4}} = \frac{x^8}{y^{-12}}

  2. Rewrite the fraction with positive exponents: =x8y12= x^8 \cdot y^{12}

  3. Multiply by y5y^5: =x8y12+5=x8y17= x^8 \cdot y^{12 + 5} = x^8 \cdot y^{17}

Answer:
x8y17x^8 \cdot y^{17}


Problem 4

Simplify:
a5b2a3b4\frac{a^5 \cdot b^{-2}}{a^{-3} \cdot b^4}

Solution:

  1. Apply the division rule to each part of the fraction: =a5(3)b24= a^{5 - (-3)} \cdot b^{-2 - 4}

  2. Simplify the exponents: =a5+3b24=a8b6= a^{5 + 3} \cdot b^{-2 - 4} = a^8 \cdot b^{-6}

  3. Rewrite with positive exponents: =a8b6= \frac{a^8}{b^6}

Answer:
a8b6\frac{a^8}{b^6}


Problem 5

Simplify:
(x2y3)2x5y4(x^{-2} \cdot y^3)^{-2} \cdot x^5 \cdot y^{-4}

Solution:

  1. Begin by simplifying (x2y3)2(x^{-2} \cdot y^3)^{-2} using the power rule: =x22y32=x4y6= x^{-2 \cdot -2} \cdot y^{3 \cdot -2} = x^4 \cdot y^{-6}

  2. Substitute back into the expression: x4y6x5y4x^4 \cdot y^{-6} \cdot x^5 \cdot y^{-4}

  3. Apply the product rule for each variable: =x4+5y6+(4)=x9y10= x^{4 + 5} \cdot y^{-6 + (-4)} = x^9 \cdot y^{-10}

  4. Rewrite with positive exponents: =x9y10= \frac{x^9}{y^{10}}

Answer:
x9y10\frac{x^9}{y^{10}}


Let me know if you need any additional explanations on these solutions.


Related Questions

  1. Simplify: (2a3b2)2a4b3\frac{(2a^3 b^{-2})^2}{a^4 b^{-3}}
  2. Simplify: (5x2y4)3(x3y)2(5x^{-2} y^4)^{-3} \cdot (x^3 y)^{-2}
  3. Simplify: (x4y3)2x5y4\frac{(x^4 y^{-3})^2}{x^5 y^4}
  4. Simplify: (3x2y3)2y6\left(\frac{3x^2}{y^{-3}}\right)^{-2} \cdot y^6
  5. Simplify: (a1b2)3a4b3\frac{(a^{-1} b^2)^{-3}}{a^4 b^{-3}}

Tip

When simplifying exponents, remember that negative exponents indicate reciprocals (e.g., an=1ana^{-n} = \frac{1}{a^n}), and be cautious to keep signs of exponents correct during each step.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Exponent Rules
Simplification

Formulas

Power rule: (a^m)^n = a^(m*n)
Division rule: a^m / a^n = a^(m - n)
Negative exponent rule: a^(-n) = 1 / a^n
Product rule: a^m * a^n = a^(m + n)

Theorems

Properties of Exponents

Suitable Grade Level

Grades 9-10