Math Problem Statement

Use the Midpoint Rule with n = 4 to approximate the area of the region bounded by the graph of the function f(x) = sin(x) over the interval [0, π/2].

Solution

To solve this problem using the Midpoint Rule, let’s go through it step-by-step.

Problem Recap

We're given:

  • The function f(x)=sin(x)f(x) = \sin(x).
  • The interval [0,π2]\left[0, \frac{\pi}{2}\right].
  • n=4n = 4, meaning we will divide the interval into 4 subintervals.

The Midpoint Rule formula for approximating the area is: Areai=1nf(xi+xi12)Δx\text{Area} \approx \sum_{i=1}^n f\left(\frac{x_i + x_{i-1}}{2}\right) \Delta x where Δx=ban\Delta x = \frac{b - a}{n}, [a,b][a, b] is the interval, and xi+xi12\frac{x_i + x_{i-1}}{2} is the midpoint of each subinterval.

Step-by-Step Solution

  1. Determine Δx\Delta x: Δx=π204=π8\Delta x = \frac{\frac{\pi}{2} - 0}{4} = \frac{\pi}{8}

  2. Identify Midpoints: We’ll divide [0,π2][0, \frac{\pi}{2}] into 4 subintervals of width π8\frac{\pi}{8}:

    • The interval [0,π8][0, \frac{\pi}{8}] has a midpoint of π16\frac{\pi}{16}.
    • The interval [π8,2π8][\frac{\pi}{8}, \frac{2\pi}{8}] has a midpoint of 3π16\frac{3\pi}{16}.
    • The interval [2π8,3π8][\frac{2\pi}{8}, \frac{3\pi}{8}] has a midpoint of 5π16\frac{5\pi}{16}.
    • The interval [3π8,π2][\frac{3\pi}{8}, \frac{\pi}{2}] has a midpoint of 7π16\frac{7\pi}{16}.
  3. Calculate ff at each midpoint: Substitute each midpoint into f(x)=sin(x)f(x) = \sin(x):

    • f(π16)=sin(π16)f\left(\frac{\pi}{16}\right) = \sin\left(\frac{\pi}{16}\right)
    • f(3π16)=sin(3π16)f\left(\frac{3\pi}{16}\right) = \sin\left(\frac{3\pi}{16}\right)
    • f(5π16)=sin(5π16)f\left(\frac{5\pi}{16}\right) = \sin\left(\frac{5\pi}{16}\right)
    • f(7π16)=sin(7π16)f\left(\frac{7\pi}{16}\right) = \sin\left(\frac{7\pi}{16}\right)
  4. Apply the Midpoint Rule: Now, plug these values into the Midpoint Rule formula: AreaΔx(f(π16)+f(3π16)+f(5π16)+f(7π16))\text{Area} \approx \Delta x \left( f\left(\frac{\pi}{16}\right) + f\left(\frac{3\pi}{16}\right) + f\left(\frac{5\pi}{16}\right) + f\left(\frac{7\pi}{16}\right) \right) Substituting Δx=π8\Delta x = \frac{\pi}{8}: Areaπ8(sin(π16)+sin(3π16)+sin(5π16)+sin(7π16))\text{Area} \approx \frac{\pi}{8} \left( \sin\left(\frac{\pi}{16}\right) + \sin\left(\frac{3\pi}{16}\right) + \sin\left(\frac{5\pi}{16}\right) + \sin\left(\frac{7\pi}{16}\right) \right)

  5. Calculate the Sine Values and Final Area Approximation: Approximating the sine values (or using a calculator):

    • sin(π16)0.1951\sin\left(\frac{\pi}{16}\right) \approx 0.1951
    • sin(3π16)0.5556\sin\left(\frac{3\pi}{16}\right) \approx 0.5556
    • sin(5π16)0.8315\sin\left(\frac{5\pi}{16}\right) \approx 0.8315
    • sin(7π16)0.9808\sin\left(\frac{7\pi}{16}\right) \approx 0.9808

    Substitute these values: Areaπ8×(0.1951+0.5556+0.8315+0.9808)\text{Area} \approx \frac{\pi}{8} \times (0.1951 + 0.5556 + 0.8315 + 0.9808) Areaπ8×2.563\text{Area} \approx \frac{\pi}{8} \times 2.563 Area1.006\text{Area} \approx 1.006

Answer

The approximate area under f(x)=sin(x)f(x) = \sin(x) from x=0x = 0 to x=π2x = \frac{\pi}{2} using the Midpoint Rule with n=4n = 4 is about 1.006.

Would you like more details on any step?


Additional Questions

  1. How does the Midpoint Rule compare to other numerical methods like the Trapezoidal Rule?
  2. How would the approximation change if we increased nn to a larger value, such as n=8n = 8?
  3. Why is the Midpoint Rule generally more accurate than the Left or Right Riemann Sum?
  4. What is the exact area under sin(x)\sin(x) from 00 to π2\frac{\pi}{2}, and how does it compare with this approximation?
  5. How do we apply the Midpoint Rule if we have a more complex function like f(x)=x2sin(x)f(x) = x^2 \sin(x)?

Tip

For improved accuracy in numerical integration, increase the number of subintervals nn; this decreases the approximation error in methods like the Midpoint and Trapezoidal Rule.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Numerical Integration
Midpoint Rule

Formulas

Area ≈ Σ f((x_i + x_{i-1}) / 2) Δx
Δx = (b - a) / n

Theorems

Midpoint Rule

Suitable Grade Level

Grades 11-12 or College Calculus