Math Problem Statement

Evaluate the following expression: ׬ 4𝜋ሺ ௠ ଶగ௞ಳ ் ሻ య మ 𝑢 ଶ 𝑒 ି ೘ೠమ మೖಳ೅ 𝑑𝑢 ஶ ଴

Solution

To evaluate the given integral, let's rewrite it in a more standard mathematical notation:

04π(m2πkBT)3/2u2emu22kBTdu\int_{0}^{\infty} 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} u^2 e^{-\frac{mu^2}{2k_B T}} \, du

This is a common integral encountered in statistical mechanics, specifically in deriving the Maxwell-Boltzmann distribution for the speed of particles in a gas. Let's break down and evaluate the integral step-by-step.

Step-by-Step Solution

  1. Identify the integral: 04π(m2πkBT)3/2u2emu22kBTdu\int_{0}^{\infty} 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} u^2 e^{-\frac{mu^2}{2k_B T}} \, du

  2. Simplify the constants: The constant 4π(m2πkBT)3/24\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} is independent of uu and can be factored out of the integral.

    Let: A=4π(m2πkBT)3/2A = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} Thus, the integral becomes: A0u2emu22kBTduA \int_{0}^{\infty} u^2 e^{-\frac{mu^2}{2k_B T}} \, du

  3. Substitute to simplify the exponential: To simplify the integral, let's make the substitution: x=mu22kBTso thatdx=mkBTudux = \frac{mu^2}{2k_B T} \quad \text{so that} \quad dx = \frac{m}{k_B T} u \, du Therefore, udu=kBTmdxu \, du = \frac{k_B T}{m} \, dx and u2=2kBTmxu^2 = \frac{2k_B T}{m} x.

    Substituting these into the integral: 0u2emu22kBTdu=02kBTmxexkBTmdx\int_{0}^{\infty} u^2 e^{-\frac{mu^2}{2k_B T}} \, du = \int_{0}^{\infty} \frac{2k_B T}{m} x e^{-x} \frac{k_B T}{m} \, dx Simplifying further: 0(kBT)2m22xexdx\int_{0}^{\infty} \frac{(k_B T)^2}{m^2} 2x e^{-x} \, dx

  4. Evaluate the resulting integral: The integral 0xexdx\int_{0}^{\infty} x e^{-x} \, dx is a standard integral that evaluates to 1.

    So: 0(kBT)2m22xexdx=(kBT)2m2×2×1=2(kBT)2m2\int_{0}^{\infty} \frac{(k_B T)^2}{m^2} 2x e^{-x} \, dx = \frac{(k_B T)^2}{m^2} \times 2 \times 1 = \frac{2(k_B T)^2}{m^2}

  5. Combine with the constant AA: Recall that A=4π(m2πkBT)3/2A = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2}.

    Thus, the integral evaluates to: 4π(m2πkBT)3/22(kBT)2m24\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} \cdot \frac{2(k_B T)^2}{m^2}

  6. Simplify the final expression: Simplifying further:

    4π1(2πkBTm)3/22(kBT)2m24\pi \cdot \frac{1}{\left(\frac{2\pi k_B T}{m}\right)^{3/2}} \cdot \frac{2(k_B T)^2}{m^2} =4π(2πkBT)3/2(2kBT)2m3/2m2= 4\pi \cdot \frac{(2\pi k_B T)^{3/2} (2k_B T)^2}{m^{3/2} m^2} =4π2(2kBTm)1/2= 4\pi \cdot 2\left(\frac{2k_B T}{m}\right)^{1/2} =4×2=8= 4 \times 2 = 8

Hence, the value of the integral is:

88

Would you like more details or explanations? Here are some related questions to explore:

  1. What is the significance of this integral in statistical mechanics?
  2. How does the Maxwell-Boltzmann distribution describe the speed of particles?
  3. What are common substitutions for simplifying Gaussian integrals?
  4. How does temperature affect the speed distribution of particles in a gas?
  5. Can you explain the role of kBk_B (Boltzmann constant) in thermodynamics?

Tip: When dealing with integrals involving exponential terms, try using substitution or parts to reduce the expression into a standard form that is easier to evaluate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistical Mechanics
Maxwell-Boltzmann Distribution
Gaussian Integrals
Exponential Functions

Formulas

∫ 0 to ∞ 4π(m / 2πk_BT)^(3/2) u^2 e^(-mu^2 / 2k_BT) du
Substitution: x = mu^2 / 2k_BT
Standard integral ∫ 0 to ∞ x e^(-x) dx = 1

Theorems

Maxwell-Boltzmann Speed Distribution
Gaussian Integrals
Boltzmann Constant (k_B) in Thermodynamics

Suitable Grade Level

University level (Undergraduate in Physics or Engineering)